Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2000, Volume 34, Issue 2, Pages 9–22
DOI: https://doi.org/10.4213/faa291
(Mi faa291)
 

This article is cited in 14 scientific papers (total in 14 papers)

Poincaré–Steklov Integral Equations and the Riemann Monodromy Problem

A. B. Bogatyrevab

a Institute of Numerical Mathematics, Russian Academy of Sciences
b Moscow Institute of Physics and Technology
References:
Abstract: We consider the Poincaré–Steklov singular integral equation obtained by reducing a boundary value problem for the Laplace operator with a spectral parameter in the boundary condition to the boundary. It is shown that this equation can be restated equivalently in terms of the classical Riemann monodromy problem. Several equations of this type are solved in elliptic functions.
Received: 24.02.1998
English version:
Functional Analysis and Its Applications, 2000, Volume 34, Issue 2, Pages 86–97
DOI: https://doi.org/10.1007/BF02482421
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. B. Bogatyrev, “Poincaré–Steklov Integral Equations and the Riemann Monodromy Problem”, Funktsional. Anal. i Prilozhen., 34:2 (2000), 9–22; Funct. Anal. Appl., 34:2 (2000), 86–97
Citation in format AMSBIB
\Bibitem{Bog00}
\by A.~B.~Bogatyrev
\paper Poincar\'e--Steklov Integral Equations and the Riemann Monodromy Problem
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 2
\pages 9--22
\mathnet{http://mi.mathnet.ru/faa291}
\crossref{https://doi.org/10.4213/faa291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1773840}
\zmath{https://zbmath.org/?q=an:0963.45002}
\elib{https://elibrary.ru/item.asp?id=13332288}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 2
\pages 86--97
\crossref{https://doi.org/10.1007/BF02482421}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088391800002}
Linking options:
  • https://www.mathnet.ru/eng/faa291
  • https://doi.org/10.4213/faa291
  • https://www.mathnet.ru/eng/faa/v34/i2/p9
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:750
    Full-text PDF :270
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024