Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 1, Pages 39–52
DOI: https://doi.org/10.4213/faa2890
(Mi faa2890)
 

This article is cited in 20 scientific papers (total in 20 papers)

The Classification of Nonsingular Multidimensional Dubrovin–Novikov Brackets

O. I. Mokhovab

a M. V. Lomonosov Moscow State University
b Landau Institute for Theoretical Physics, Centre for Non-linear Studies
References:
Abstract: In this paper, the well-known Dubrovin–Novikov problem posed as long ago as in 1984 in connection with the Hamiltonian theory of systems of hydrodynamic type, namely, the classification problem for multidimensional Poisson brackets of hydrodynamic type, is solved. In contrast to the one-dimensional case, in the general case, a nondegenerate multidimensional Poisson bracket of hydrodynamic type cannot be reduced to a constant form by a local change of coordinates. Generally speaking, such Poisson brackets are generated by nontrivial canonical special infinite-dimensional Lie algebras. In this paper, we obtain a classification of all nonsingular nondegenerate multidimensional Poisson brackets of hydrodynamic type for any number $N$ of components and for any dimension $n$ by differential-geometric methods. A key role in the solution of this problem is played by the theory of compatible metrics earlier constructed by the present author.
Keywords: multidimensional Dubrovin–Novikov bracket, multidimensional Poisson bracket of hydrodynamic type, obstruction tensor, infinite-dimensional Lie algebra, compatible metrics, flat pencil of metrics, system of hydrodynamic type, compatible Poisson brackets.
Received: 11.08.2006
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 1, Pages 33–44
DOI: https://doi.org/10.1007/s10688-008-0004-8
Bibliographic databases:
Document Type: Article
UDC: 514.7+517.9
Language: Russian
Citation: O. I. Mokhov, “The Classification of Nonsingular Multidimensional Dubrovin–Novikov Brackets”, Funktsional. Anal. i Prilozhen., 42:1 (2008), 39–52; Funct. Anal. Appl., 42:1 (2008), 33–44
Citation in format AMSBIB
\Bibitem{Mok08}
\by O.~I.~Mokhov
\paper The Classification of Nonsingular Multidimensional Dubrovin--Novikov Brackets
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 1
\pages 39--52
\mathnet{http://mi.mathnet.ru/faa2890}
\crossref{https://doi.org/10.4213/faa2890}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423977}
\zmath{https://zbmath.org/?q=an:1180.37088}
\elib{https://elibrary.ru/item.asp?id=10441218}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 1
\pages 33--44
\crossref{https://doi.org/10.1007/s10688-008-0004-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255229000004}
\elib{https://elibrary.ru/item.asp?id=13565359}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41549164319}
Linking options:
  • https://www.mathnet.ru/eng/faa2890
  • https://doi.org/10.4213/faa2890
  • https://www.mathnet.ru/eng/faa/v42/i1/p39
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:665
    Full-text PDF :275
    References:77
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024