|
This article is cited in 3 scientific papers (total in 3 papers)
Direct and Inverse Asymptotic Scattering Problems for Dirac–Krein Systems
D. Z. Arova, H. Dymb a South Ukrainian State K. D. Ushynsky Pedagogical University
b Weizmann Institute of Science
Abstract:
The asymptotic scattering matrix $s_{\varepsilon}(\lambda)$ for a Dirac–Krein system with signature matrix $J=\operatorname{diag}\{I_p,-I_p\}$, integrable potential, and the boundary condition $u_1(0,\lambda)=u_2(0,\lambda)\varepsilon(\lambda)$ with a coefficient $\varepsilon(\lambda)$ that belongs to the Schur class of holomorphic contractive $p\times p$ matrix-valued functions in the open upper half-plane is defined. The inverse asymptotic scattering problem for a given $s_{\varepsilon}$ is analyzed by Krein's method. Earlier studies by Krein and others focused on the case in which $\varepsilon=I_p$ (or a constant unitary matrix).
Keywords:
inverse problem, asymptotic scattering matrix, matrix-valued function, Hilbert space, linear bounded operator, Nehari problem, Schur problem, Hankel operator, Toeplitz operator, Wiener class.
Received: 02.03.2007
Citation:
D. Z. Arov, H. Dym, “Direct and Inverse Asymptotic Scattering Problems for Dirac–Krein Systems”, Funktsional. Anal. i Prilozhen., 41:3 (2007), 17–33; Funct. Anal. Appl., 41:3 (2007), 181–195
Linking options:
https://www.mathnet.ru/eng/faa2866https://doi.org/10.4213/faa2866 https://www.mathnet.ru/eng/faa/v41/i3/p17
|
Statistics & downloads: |
Abstract page: | 463 | Full-text PDF : | 132 | References: | 67 | First page: | 4 |
|