Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2007, Volume 41, Issue 2, Pages 44–57
DOI: https://doi.org/10.4213/faa2860
(Mi faa2860)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Inverse Problem for Krein Orthogonal Matrix Functions

I. Ts. Gokhberga, M. A. Kaashoekb, L. E. Lererc

a Tel Aviv University, School of Mathematical Sciences
b Vrije Universiteit
c Technion – Israel Institute of Technology
Full-text PDF (216 kB) Citations (3)
References:
Abstract: In the mid-fifties, in a seminal paper, M. G. Krein introduced continuous analogs of Szegő orthogonal polynomials on the unit circle and established their main properties. In this paper, we generalize these results and subsequent results that he obtained jointly with Langer to the case of matrix-valued functions. Our main theorems are much more involved than their scalar counterparts. They contain new conditions based on Jordan chains and root functions. The proofs require new techniques based on recent results in the theory of continuous analogs of resultant and Bezout matrices and solutions of certain equations in entire matrix functions.
Keywords: Krein orthogonal function, continuous analog of orthogonal polynomials, entire matrix function equation, Jordan chain, root function, inverse problem.
Received: 01.11.2006
English version:
Functional Analysis and Its Applications, 2007, Volume 41, Issue 2, Pages 115–125
DOI: https://doi.org/10.1007/s10688-007-0011-1
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: I. Ts. Gokhberg, M. A. Kaashoek, L. E. Lerer, “The Inverse Problem for Krein Orthogonal Matrix Functions”, Funktsional. Anal. i Prilozhen., 41:2 (2007), 44–57; Funct. Anal. Appl., 41:2 (2007), 115–125
Citation in format AMSBIB
\Bibitem{GokKaaLer07}
\by I.~Ts.~Gokhberg, M.~A.~Kaashoek, L.~E.~Lerer
\paper The Inverse Problem for Krein Orthogonal Matrix Functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2007
\vol 41
\issue 2
\pages 44--57
\mathnet{http://mi.mathnet.ru/faa2860}
\crossref{https://doi.org/10.4213/faa2860}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2345040}
\zmath{https://zbmath.org/?q=an:05206863}
\elib{https://elibrary.ru/item.asp?id=9521279}
\transl
\jour Funct. Anal. Appl.
\yr 2007
\vol 41
\issue 2
\pages 115--125
\crossref{https://doi.org/10.1007/s10688-007-0011-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000248280900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547544325}
Linking options:
  • https://www.mathnet.ru/eng/faa2860
  • https://doi.org/10.4213/faa2860
  • https://www.mathnet.ru/eng/faa/v41/i2/p44
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024