Citation:
A. A. Kirillov, “The characters of unitary representations of Lie groups”, Funktsional. Anal. i Prilozhen., 2:2 (1968), 40–55; Funct. Anal. Appl., 2:2 (1968), 133–146
\Bibitem{Kir68}
\by A.~A.~Kirillov
\paper The characters of unitary representations of Lie groups
\jour Funktsional. Anal. i Prilozhen.
\yr 1968
\vol 2
\issue 2
\pages 40--55
\mathnet{http://mi.mathnet.ru/faa2766}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=236318}
\zmath{https://zbmath.org/?q=an:0174.45001}
\transl
\jour Funct. Anal. Appl.
\yr 1968
\vol 2
\issue 2
\pages 133--146
\crossref{https://doi.org/10.1007/BF01075947}
Linking options:
https://www.mathnet.ru/eng/faa2766
https://www.mathnet.ru/eng/faa/v2/i2/p40
This publication is cited in the following 29 articles:
Anurag Kaushal, Naveen S. Prabhakar, Spenta R. Wadia, “Meson spectrum of SU(2) QCD1+1 with quarks in Large representations”, J. High Energ. Phys., 2023:11 (2023)
Ehssan Khanmohammadi, “On the Positivity of Kirillov's Character Formula”, Math Phys Anal Geom, 23:2 (2020)
McSwiggen C., “A New Proof of Harish-Chandra'S Integral Formula”, Commun. Math. Phys., 365:1 (2019), 239–253
A. I. Breev, “Scalar field vacuum polarization on homogeneous spaces with an invariant metric”, Theoret. and Math. Phys., 178:1 (2014), 59–75
A. I. Breev, I. V. Shirokov, A. A. Magazev, “Vacuum polarization of a scalar field on Lie groups and homogeneous spaces”, Theoret. and Math. Phys., 167:1 (2011), 468–483
Johannes Huebschmann, “Kirillov's character formula, the holomorphic Peter–Weyl theorem, and the Blattner–Kostant–Sternberg pairing”, Journal of Geometry and Physics, 58:7 (2008), 833
G Rosensteel, “Mean field theory for usp(4) sime so(5)”, J. Phys. A: Math. Gen., 38:42 (2005), 9221
I. V. Shirokov, “Darboux coordinates on K-orbits and the spectra of Casimir operators on Lie groups”, Theoret. and Math. Phys., 123:3 (2000), 754–767
Mauri Miettinen, “On localization and regularization”, Journal of Mathematical Physics, 37:7 (1996), 3141
Methods of Noncommutative Analysis, 1996, 357
O. Tirkkonen, “Quantum integrability and localization formulas”, Theoret. and Math. Phys., 95:2 (1993), 672–675
Héctor Figueroa, José M. Gracia-Bondía, Joseph C. Várilly, “Moyal quantization with compact symmetry groups and noncommutative harmonic analysis”, Journal of Mathematical Physics, 31:11 (1990), 2664
North-Holland Mathematical Library, 44, Unitary Representations and Harmonic Analysis: An Introduction, 1990, 417
B. Ya. Kazarnovskii, “Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations”, Funct. Anal. Appl., 21:4 (1987), 319–321
M. V. Karasev, V. P. Maslov, “Asymptotic and geometric quantization”, Russian Math. Surveys, 39:6 (1984), 133–205
V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42
A. A. Zaitsev, “Equivalence of holomorphically induced representations of Lie groups with an Abelian normal subgroup”, Math. USSR-Sb., 46:2 (1983), 171–182
J. J. Duistermaat, G. J. Heckman, “On the variation in the cohomology of the symplectic form of the reduced phase space”, Invent Math, 69:2 (1982), 259
Alan Weinstein, Lecture Notes in Mathematics, 905, Differential Geometric Methods in Mathematical Physics, 1982, 45