Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1968, Volume 2, Issue 2, Pages 40–55 (Mi faa2766)  

This article is cited in 28 scientific papers (total in 29 papers)

The characters of unitary representations of Lie groups

A. A. Kirillov
Received: 18.10.1967
English version:
Functional Analysis and Its Applications, 1968, Volume 2, Issue 2, Pages 133–146
DOI: https://doi.org/10.1007/BF01075947
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Kirillov, “The characters of unitary representations of Lie groups”, Funktsional. Anal. i Prilozhen., 2:2 (1968), 40–55; Funct. Anal. Appl., 2:2 (1968), 133–146
Citation in format AMSBIB
\Bibitem{Kir68}
\by A.~A.~Kirillov
\paper The characters of unitary representations of Lie groups
\jour Funktsional. Anal. i Prilozhen.
\yr 1968
\vol 2
\issue 2
\pages 40--55
\mathnet{http://mi.mathnet.ru/faa2766}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=236318}
\zmath{https://zbmath.org/?q=an:0174.45001}
\transl
\jour Funct. Anal. Appl.
\yr 1968
\vol 2
\issue 2
\pages 133--146
\crossref{https://doi.org/10.1007/BF01075947}
Linking options:
  • https://www.mathnet.ru/eng/faa2766
  • https://www.mathnet.ru/eng/faa/v2/i2/p40
  • This publication is cited in the following 29 articles:
    1. Anurag Kaushal, Naveen S. Prabhakar, Spenta R. Wadia, “Meson spectrum of SU(2) QCD1+1 with quarks in Large representations”, J. High Energ. Phys., 2023:11 (2023)  crossref
    2. Ehssan Khanmohammadi, “On the Positivity of Kirillov's Character Formula”, Math Phys Anal Geom, 23:2 (2020)  crossref
    3. McSwiggen C., “A New Proof of Harish-Chandra'S Integral Formula”, Commun. Math. Phys., 365:1 (2019), 239–253  crossref  mathscinet  zmath  isi  scopus
    4. A. I. Breev, “Scalar field vacuum polarization on homogeneous spaces with an invariant metric”, Theoret. and Math. Phys., 178:1 (2014), 59–75  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. A. I. Breev, I. V. Shirokov, A. A. Magazev, “Vacuum polarization of a scalar field on Lie groups and homogeneous spaces”, Theoret. and Math. Phys., 167:1 (2011), 468–483  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    6. Johannes Huebschmann, “Kirillov's character formula, the holomorphic Peter–Weyl theorem, and the Blattner–Kostant–Sternberg pairing”, Journal of Geometry and Physics, 58:7 (2008), 833  crossref
    7. G Rosensteel, “Mean field theory for usp(4) sime so(5)”, J. Phys. A: Math. Gen., 38:42 (2005), 9221  crossref
    8. I. V. Shirokov, “Darboux coordinates on K-orbits and the spectra of Casimir operators on Lie groups”, Theoret. and Math. Phys., 123:3 (2000), 754–767  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Mauri Miettinen, “On localization and regularization”, Journal of Mathematical Physics, 37:7 (1996), 3141  crossref
    10. Methods of Noncommutative Analysis, 1996, 357  crossref
    11. O. Tirkkonen, “Quantum integrability and localization formulas”, Theoret. and Math. Phys., 95:2 (1993), 672–675  mathnet  crossref  mathscinet  zmath  isi
    12. Héctor Figueroa, José M. Gracia-Bondía, Joseph C. Várilly, “Moyal quantization with compact symmetry groups and noncommutative harmonic analysis”, Journal of Mathematical Physics, 31:11 (1990), 2664  crossref
    13. North-Holland Mathematical Library, 44, Unitary Representations and Harmonic Analysis: An Introduction, 1990, 417  crossref
    14. Wilfried Schmid, Representations of Lie Groups, Kyoto, Hiroshima, 1986, 1988, 349  crossref
    15. B. Ya. Kazarnovskii, “Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations”, Funct. Anal. Appl., 21:4 (1987), 319–321  mathnet  crossref  mathscinet  zmath  isi
    16. M. V. Karasev, V. P. Maslov, “Asymptotic and geometric quantization”, Russian Math. Surveys, 39:6 (1984), 133–205  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    17. V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    18. A. A. Zaitsev, “Equivalence of holomorphically induced representations of Lie groups with an Abelian normal subgroup”, Math. USSR-Sb., 46:2 (1983), 171–182  mathnet  crossref  mathscinet  zmath
    19. J. J. Duistermaat, G. J. Heckman, “On the variation in the cohomology of the symplectic form of the reduced phase space”, Invent Math, 69:2 (1982), 259  crossref
    20. Alan Weinstein, Lecture Notes in Mathematics, 905, Differential Geometric Methods in Mathematical Physics, 1982, 45  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:607
    Full-text PDF :284
    References:2
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025