Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2001, Volume 35, Issue 4, Pages 20–25
DOI: https://doi.org/10.4213/faa269
(Mi faa269)
 

This article is cited in 5 scientific papers (total in 6 papers)

A Constructive Proof of the Generalized Gelfand Isomorphism

V. M. Buchstabera, E. G. Reesb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Edinburgh
Full-text PDF (108 kB) Citations (6)
References:
Abstract: Using an analog of the classical Frobenius recursion, we define the notion of a Frobenius $n$-homomorphism. For $n=1$, this is an ordinary ring homomorphism. We give a constructive proof of the following theorem. Let $X$ be a compact Hausdorff space, $\operatorname{Sym}^n(X)$ the $n$th symmetric power of $X$, and $\mathbb{C}(X)$ the algebra of continuous complex-valued functions on $X$ with the sup-norm; then the evaluation map $\mathcal{E}\colon\operatorname{Sym}^n(X)\to\operatorname{Hom}(\mathbb{C}(X),\mathbb{C})$ defined by the formula $[x_1,\dots,x_n]\to(g\to\sum g(x_k))$ identifies the space $\operatorname{Sym}^n(X)$ with the space of all Frobenius $n$-homomorphisms of the algebra $\mathbb{C}(X)$ into $\mathbb{C}$ with the weak topology.
Received: 10.09.2001
English version:
Functional Analysis and Its Applications, 2001, Volume 35, Issue 4, Pages 257–260
DOI: https://doi.org/10.1023/A:1013170322564
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. M. Buchstaber, E. G. Rees, “A Constructive Proof of the Generalized Gelfand Isomorphism”, Funktsional. Anal. i Prilozhen., 35:4 (2001), 20–25; Funct. Anal. Appl., 35:4 (2001), 257–260
Citation in format AMSBIB
\Bibitem{BucRee01}
\by V.~M.~Buchstaber, E.~G.~Rees
\paper A Constructive Proof of the Generalized Gelfand Isomorphism
\jour Funktsional. Anal. i Prilozhen.
\yr 2001
\vol 35
\issue 4
\pages 20--25
\mathnet{http://mi.mathnet.ru/faa269}
\crossref{https://doi.org/10.4213/faa269}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879115}
\zmath{https://zbmath.org/?q=an:0993.54018}
\transl
\jour Funct. Anal. Appl.
\yr 2001
\vol 35
\issue 4
\pages 257--260
\crossref{https://doi.org/10.1023/A:1013170322564}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173338400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035565817}
Linking options:
  • https://www.mathnet.ru/eng/faa269
  • https://doi.org/10.4213/faa269
  • https://www.mathnet.ru/eng/faa/v35/i4/p20
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:585
    Full-text PDF :216
    References:77
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024