|
This article is cited in 5 scientific papers (total in 6 papers)
A Constructive Proof of the Generalized Gelfand Isomorphism
V. M. Buchstabera, E. G. Reesb a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Edinburgh
Abstract:
Using an analog of the classical Frobenius recursion, we define the notion of a Frobenius $n$-homomorphism. For
$n=1$, this is an ordinary ring homomorphism. We give a constructive proof of the following theorem. Let $X$ be a
compact Hausdorff space, $\operatorname{Sym}^n(X)$ the $n$th symmetric power of $X$, and $\mathbb{C}(X)$ the algebra of continuous complex-valued functions on $X$ with the sup-norm; then the evaluation map
$\mathcal{E}\colon\operatorname{Sym}^n(X)\to\operatorname{Hom}(\mathbb{C}(X),\mathbb{C})$ defined by
the formula $[x_1,\dots,x_n]\to(g\to\sum g(x_k))$ identifies the space $\operatorname{Sym}^n(X)$ with the space of all Frobenius $n$-homomorphisms of the algebra $\mathbb{C}(X)$ into $\mathbb{C}$ with the weak topology.
Received: 10.09.2001
Citation:
V. M. Buchstaber, E. G. Rees, “A Constructive Proof of the Generalized Gelfand Isomorphism”, Funktsional. Anal. i Prilozhen., 35:4 (2001), 20–25; Funct. Anal. Appl., 35:4 (2001), 257–260
Linking options:
https://www.mathnet.ru/eng/faa269https://doi.org/10.4213/faa269 https://www.mathnet.ru/eng/faa/v35/i4/p20
|
Statistics & downloads: |
Abstract page: | 585 | Full-text PDF : | 216 | References: | 77 | First page: | 2 |
|