Citation:
V. I. Gorbachuk, M. L. Gorbachuk, “Self-adjoint boundary problems with discrete spectrum generated by the Sturm–Liouville equation with unbounded operator coefficient”, Funktsional. Anal. i Prilozhen., 5:4 (1971), 67–68; Funct. Anal. Appl., 5:4 (1971), 322–323
\Bibitem{GorGor71}
\by V.~I.~Gorbachuk, M.~L.~Gorbachuk
\paper Self-adjoint boundary problems with discrete spectrum generated by the Sturm--Liouville equation with unbounded operator coefficient
\jour Funktsional. Anal. i Prilozhen.
\yr 1971
\vol 5
\issue 4
\pages 67--68
\mathnet{http://mi.mathnet.ru/faa2619}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=288624}
\zmath{https://zbmath.org/?q=an:0259.34072}
\transl
\jour Funct. Anal. Appl.
\yr 1971
\vol 5
\issue 4
\pages 322--323
\crossref{https://doi.org/10.1007/BF01086746}
Linking options:
https://www.mathnet.ru/eng/faa2619
https://www.mathnet.ru/eng/faa/v5/i4/p67
This publication is cited in the following 6 articles:
V. A. Mikhailets, “Asymptotics of the eigenvalues of a Sturm–Liouville equation with variable operator coefficients”, Funct. Anal. Appl., 11:1 (1977), 62–63
V. I. Gorbachuk, M. L. Gorbachuk, “Some questions of the spectral theory of differential equations of elliptic type in the space of vector-functions”, Ukr Math J, 28:3 (1977), 244
V. I. Gorbachuk, M. L. Gorbachuk, “Some questions of the spectral theory of differential equations of elliptic type in the space of vector functions on a finite interval”, Ukr Math J, 28:1 (1976), 9
L. I. Vainerman, “Dissipative boundary value problems for a second-order differential equation with an unbounded variable operator coefficient”, Ukr Math J, 26:4 (1975), 436
V. I. Gorbachuk, M. L. Gorbachuk, “Classes of boundary-value problems for the sturm ? Liouville equation with an operator potential”, Ukr Math J, 24:3 (1973), 241
Nguen Kuok Zan, “On a boundary problem for the Laplace equation in the disk”, Ukr Math J, 24:6 (1973), 613