Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2001, Volume 35, Issue 3, Pages 48–59
DOI: https://doi.org/10.4213/faa258
(Mi faa258)
 

This article is cited in 22 scientific papers (total in 22 papers)

An Ellipsoidal Billiard with a Quadratic Potential

Yu. N. Fedorov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: There exists an infinite hierarchy of integrable generalizations of the geodesic flow on an $n$-dimensional ellipsoid. These generalizations describe the motion of a point in the force fields of certain polynomial potentials. In the limit as one of semiaxes of the ellipsoid tends to zero, one obtains integrable mappings corresponding to billiards with polynomial potentials inside an $(n-1)$-dimensional ellipsoid.
In this paper, for the first time we give explicit expressions for the ellipsoidal billiard with a quadratic (Hooke) potential, its representation in Lax form, and a theta function solution. We also indicate the generating function of the restriction of the potential billiard map to a level set of an energy type integral. The method we use to obtain theta function solutions is different from those applied earlier and is based on the calculation of limit values of meromorphic functions on generalized Jacobians.
Received: 29.09.2000
English version:
Functional Analysis and Its Applications, 2001, Volume 35, Issue 3, Pages 199–208
DOI: https://doi.org/10.1023/A:1012326828456
Bibliographic databases:
Document Type: Article
UDC: 514.85+515.178+531.01
Language: Russian
Citation: Yu. N. Fedorov, “An Ellipsoidal Billiard with a Quadratic Potential”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 48–59; Funct. Anal. Appl., 35:3 (2001), 199–208
Citation in format AMSBIB
\Bibitem{Fed01}
\by Yu.~N.~Fedorov
\paper An Ellipsoidal Billiard with a Quadratic Potential
\jour Funktsional. Anal. i Prilozhen.
\yr 2001
\vol 35
\issue 3
\pages 48--59
\mathnet{http://mi.mathnet.ru/faa258}
\crossref{https://doi.org/10.4213/faa258}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1864988}
\zmath{https://zbmath.org/?q=an:1001.37044}
\transl
\jour Funct. Anal. Appl.
\yr 2001
\vol 35
\issue 3
\pages 199--208
\crossref{https://doi.org/10.1023/A:1012326828456}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172598500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035735168}
Linking options:
  • https://www.mathnet.ru/eng/faa258
  • https://doi.org/10.4213/faa258
  • https://www.mathnet.ru/eng/faa/v35/i3/p48
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025