Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2001, Volume 35, Issue 3, Pages 36–47
DOI: https://doi.org/10.4213/faa257
(Mi faa257)
 

This article is cited in 4 scientific papers (total in 4 papers)

On Polytopes that are Simple at the Edges

V. A. Timorinab

a Steklov Mathematical Institute, Russian Academy of Sciences
b University of Toronto
Full-text PDF (188 kB) Citations (4)
References:
Abstract: We study some combinatorial properties of polytopes that are simple at the edges. We give an elementary geometric proof of an analog of the hard Lefschetz theorem for the polytopes for which the distance between any two nonsimple vertices is sufficiently large. This implies that the $h$-vector of such polytopes satisfies the relations $h_{[d/2]}\ge h_{[d/2]+1}\ge\cdots\ge h_d=1$, where $d$ is the dimension of the polytope, which proves a special case of Stanley's conjecture.
Received: 05.06.2000
English version:
Functional Analysis and Its Applications, 2001, Volume 35, Issue 3, Pages 189–198
DOI: https://doi.org/10.1023/A:1012374711617
Bibliographic databases:
Document Type: Article
UDC: 514.172.45+515.165.4
Language: Russian
Citation: V. A. Timorin, “On Polytopes that are Simple at the Edges”, Funktsional. Anal. i Prilozhen., 35:3 (2001), 36–47; Funct. Anal. Appl., 35:3 (2001), 189–198
Citation in format AMSBIB
\Bibitem{Tim01}
\by V.~A.~Timorin
\paper On Polytopes that are Simple at the Edges
\jour Funktsional. Anal. i Prilozhen.
\yr 2001
\vol 35
\issue 3
\pages 36--47
\mathnet{http://mi.mathnet.ru/faa257}
\crossref{https://doi.org/10.4213/faa257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1864987}
\zmath{https://zbmath.org/?q=an:1009.52020}
\elib{https://elibrary.ru/item.asp?id=14150283}
\transl
\jour Funct. Anal. Appl.
\yr 2001
\vol 35
\issue 3
\pages 189--198
\crossref{https://doi.org/10.1023/A:1012374711617}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172598500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035733985}
Linking options:
  • https://www.mathnet.ru/eng/faa257
  • https://doi.org/10.4213/faa257
  • https://www.mathnet.ru/eng/faa/v35/i3/p36
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025