Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2001, Volume 35, Issue 1, Pages 1–15
DOI: https://doi.org/10.4213/faa227
(Mi faa227)
 

This article is cited in 22 scientific papers (total in 22 papers)

Spectral Properties of Solutions of the Burgers Equation with Small Dissipation

A. E. Biryukab

a M. V. Lomonosov Moscow State University
b Heriot Watt University
References:
Abstract: We study the asymptotic behavior as $\delta\to0$ of the Sobolev norm $\|u\|_m$ of the solution to the Cauchy problem for the one-dimensional quasilinear Burgers type equation $u_t+f(u)_x=\delta u_{xx}$ (It is assumed that the problem is $C^{\infty}$, the boundary conditions are periodic, and $f''\ge\sigma>0$.) We show that the locally time-averaged Sobolev norms satisfy the estimate $c_m\delta^{-m+1/2}<\langle\|u\|_m^2\rangle^{1/2}<C_m\delta^{-m+1/2}$ ($m\ge1$). The estimates obtained as a consequence for the Fourier coefficients justify Kolmogorov's spectral theory of turbulence for the case of the Burgers equation.
Received: 15.09.1999
English version:
Functional Analysis and Its Applications, 2001, Volume 35, Issue 1, Pages 1–12
DOI: https://doi.org/10.1023/A:1004143415090
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. E. Biryuk, “Spectral Properties of Solutions of the Burgers Equation with Small Dissipation”, Funktsional. Anal. i Prilozhen., 35:1 (2001), 1–15; Funct. Anal. Appl., 35:1 (2001), 1–12
Citation in format AMSBIB
\Bibitem{Bir01}
\by A.~E.~Biryuk
\paper Spectral Properties of Solutions of the Burgers Equation with Small Dissipation
\jour Funktsional. Anal. i Prilozhen.
\yr 2001
\vol 35
\issue 1
\pages 1--15
\mathnet{http://mi.mathnet.ru/faa227}
\crossref{https://doi.org/10.4213/faa227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1840744}
\zmath{https://zbmath.org/?q=an:1032.35154}
\elib{https://elibrary.ru/item.asp?id=14210337}
\transl
\jour Funct. Anal. Appl.
\yr 2001
\vol 35
\issue 1
\pages 1--12
\crossref{https://doi.org/10.1023/A:1004143415090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170157300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035639812}
Linking options:
  • https://www.mathnet.ru/eng/faa227
  • https://doi.org/10.4213/faa227
  • https://www.mathnet.ru/eng/faa/v35/i1/p1
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025