Abstract:
Let H be an infinite hyperbolic group with Kazhdan property (T) and let ϰ(H,X) denote the Kazhdan constant of H with respect to a generating set X. We prove that infXϰ(H,X)=0, where the
infimum is taken over all finite generating sets of H. In particular, this gives an answer to a Lubotzky question.
This publication is cited in the following 12 articles:
Leary I.J., Minasyan A., “Commensurating Hnn Extensions: Nonpositive Curvature and Biautomaticity”, Geom. Topol., 25:4 (2021), 1819–1860
Erschler A., Zheng T., “Isoperimetric Inequalities, Shapes of Folner Sets and Groups With Shalom'S Property H-Fd”, Ann. Inst. Fourier, 70:4 (2020), 1363–1402
Minasyan A., Osin D., “Acylindrically Hyperbolic Groups With Exotic Properties”, J. Algebra, 522 (2019), 218–235
Hull M., “Small cancellation in acylindrically hyperbolic groups”, Group. Geom. Dyn., 10:4 (2016), 1077–1119
Olshanskii A.Yu., Osin D.V., “C-Simple Groups Without Free Subgroups”, Group. Geom. Dyn., 8:3 (2014), 933–983
Ershov M., Jaikin-Zapirain A., “Kazhdan quotients of Golod-Shafarevich groups”, Proc London Math Soc, 102:4 (2011), 599–636
Ol'Shanskii A.Yu., Osin D.V., Sapir M.V., Kapovich M., Kleiner B., “Lacunary hyperbolic groups”, Geometry & Topology, 13 (2009), 2051–2140
T. G. Ceccherini-Silberstein, A. Y. Samet-Vaillant, “Asymptotic invariants of finitely generated algebras. A generalization of Gromov's quasi-isometric viewpoint”, J Math Sci, 156:1 (2009), 56
Arzhantseva G.N., Burillo J., Lustig M., Reeves L., Short H., Ventura E., “Uniform non-amenability”, Adv Math, 197:2 (2005), 499–522
Champetier C., Guirardel V., “Limit groups as limits of free groups”, Israel J Math, 146 (2005), 1–75
Osin D.V., “Algebraic entropy of elementary amenable groups”, Geom. Dedicata, 107:1 (2004), 133–151
Gamburd A., “Expander graphs, random matrices and quantum chaos”, Random Walks and Geometry, 2004, 109–140