Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2002, Volume 36, Issue 4, Pages 18–34
DOI: https://doi.org/10.4213/faa216
(Mi faa216)
 

This article is cited in 33 scientific papers (total in 34 papers)

Polynomial Lie Algebras

V. M. Buchstabera, D. V. Leikinb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Magnetism, National Academy of Sciences of Ukraine
References:
Abstract: We introduce and study a special class of infinite-dimensional Lie algebras that are finite-dimensional modules over a ring of polynomials. The Lie algebras of this class are said to be polynomial. Some classification results are obtained. An associative co-algebra structure on the rings $k[x_1,\dots,x_n]/(f_1,\dots,f_n)$ is introduced and, on its basis, an explicit expression for convolution matrices of invariants for isolated singularities of functions is found. The structure polynomials of moving frames defined by convolution matrices are constructed for simple singularities of the types $A$, $B$, $C$, $D$, and $E_6$.
Keywords: Lie algebra, moving frame, convolution of invariants, co-algebra.
Received: 05.05.2002
English version:
Functional Analysis and Its Applications, 2002, Volume 36, Issue 4, Pages 267–280
DOI: https://doi.org/10.1023/A:1021757609372
Bibliographic databases:
Document Type: Article
UDC: 512.554.32+517
Language: Russian
Citation: V. M. Buchstaber, D. V. Leikin, “Polynomial Lie Algebras”, Funktsional. Anal. i Prilozhen., 36:4 (2002), 18–34; Funct. Anal. Appl., 36:4 (2002), 267–280
Citation in format AMSBIB
\Bibitem{BucLei02}
\by V.~M.~Buchstaber, D.~V.~Leikin
\paper Polynomial Lie Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 4
\pages 18--34
\mathnet{http://mi.mathnet.ru/faa216}
\crossref{https://doi.org/10.4213/faa216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1958992}
\zmath{https://zbmath.org/?q=an:1027.17020}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 4
\pages 267--280
\crossref{https://doi.org/10.1023/A:1021757609372}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180858500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036933092}
Linking options:
  • https://www.mathnet.ru/eng/faa216
  • https://doi.org/10.4213/faa216
  • https://www.mathnet.ru/eng/faa/v36/i4/p18
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024