Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2002, Volume 36, Issue 3, Pages 87–90
DOI: https://doi.org/10.4213/faa212
(Mi faa212)
 

This article is cited in 2 scientific papers (total in 2 papers)

Brief communications

Multipliers on the Set of Rademacher Series in Symmetric Spaces

G. P. Curberaa, V. A. Rodinb

a University of Seville
b Voronezh Institute of Russian Ministry of Internal Affairs
Full-text PDF (135 kB) Citations (2)
References:
Abstract: Let $E$ be a symmetric space on $[0,1]$. Let $\Lambda(\mathcal{R},E)$ be the space of measurable functions $f$ such that $fg\in E$ for every almost everywhere convergent series $g=\sum b_nr_n\in E$, where $(r_n)$ are the Rademacher functions. In [G. P. Curbera, Proc. Edinb. Math. Soc., 40, No. 1, 119–126 (1997)] it was shown that, for a broad class of spaces $E$, the space $\Lambda(\mathcal{R},E)$ is not order isomorphic to a symmetric space, and we study the conditions under which such an isomorphism exists. We give conditions on $E$ for $\Lambda(\mathcal{R},E)$ to be order isomorphic to $L_\infty$. This includes some classes of Lorentz and Marcinkiewicz spaces. We also study the conditions under which $\Lambda(\mathcal{R},E)$ is order isomorphic to a symmetric space that differs from $L_\infty$. The answer is positive for the Orlicz spaces $E=L_{\Phi_q}$ with $\Phi_q(t)=\exp|t|^q-1$ and $0<q<2$.
Keywords: Rademacher series in symmetric spaces, Orlicz and Marcinkiewicz spaces, multiplier for Rademacher series.
Received: 09.11.2000
English version:
Functional Analysis and Its Applications, 2002, Volume 36, Issue 3, Pages 244–246
DOI: https://doi.org/10.1023/A:1020166525490
Bibliographic databases:
Document Type: Article
UDC: 517.982
Language: Russian
Citation: G. P. Curbera, V. A. Rodin, “Multipliers on the Set of Rademacher Series in Symmetric Spaces”, Funktsional. Anal. i Prilozhen., 36:3 (2002), 87–90; Funct. Anal. Appl., 36:3 (2002), 244–246
Citation in format AMSBIB
\Bibitem{CurRod02}
\by G.~P.~Curbera, V.~A.~Rodin
\paper Multipliers on the Set of Rademacher Series in Symmetric Spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 3
\pages 87--90
\mathnet{http://mi.mathnet.ru/faa212}
\crossref{https://doi.org/10.4213/faa212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1935911}
\zmath{https://zbmath.org/?q=an:1028.42011}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 3
\pages 244--246
\crossref{https://doi.org/10.1023/A:1020166525490}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178488500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036375654}
Linking options:
  • https://www.mathnet.ru/eng/faa212
  • https://doi.org/10.4213/faa212
  • https://www.mathnet.ru/eng/faa/v36/i3/p87
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :175
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024