Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 2, Pages 1–12
DOI: https://doi.org/10.4213/faa2
(Mi faa2)
 

Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators

S. S. Akbarov

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
References:
Abstract: It is well known that every module $M$ over the algebra $\mathcal{L}(X)$ of operators on a finite-dimensional space $X$ can be represented as the tensor product of $X$ by some vector space $E$, $M\cong E\otimes X$. We generalize this assertion to the case of topological modules by proving that if $X$ is a stereotype space with the stereotype approximation property, then for each stereotype module $M$ over the stereotype algebra $\mathcal{L}(X)$ of operators on $X$ there exists a unique (up to isomorphism) stereotype space $E$ such that $M$ lies between two natural stereotype tensor products of $E$ by $X$,
$$ E\circledast X\subseteq M\subseteq E\odot X. $$
As a corollary, we show that if $X$ is a nuclear Fréchet space with a basis, then each Fréchet module $M$ over the stereotype operator algebra $\mathcal{L}(X)$ can be uniquely represented as the projective tensor product of $X$ by some Fréchet space $E$, $M=E\,\widehat{\otimes}\kern1pt X$.
Received: 13.10.2004
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 2, Pages 81–90
DOI: https://doi.org/10.1007/s10688-006-0014-3
Bibliographic databases:
Document Type: Article
UDC: 517.982.1+517.986.2
Language: Russian
Citation: S. S. Akbarov, “Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators”, Funktsional. Anal. i Prilozhen., 40:2 (2006), 1–12; Funct. Anal. Appl., 40:2 (2006), 81–90
Citation in format AMSBIB
\Bibitem{Akb06}
\by S.~S.~Akbarov
\paper Structure of Modules over the Stereotype Algebra $\mathcal{L}(X)$ of Operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 2
\pages 1--12
\mathnet{http://mi.mathnet.ru/faa2}
\crossref{https://doi.org/10.4213/faa2}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2256858}
\zmath{https://zbmath.org/?q=an:1106.46035}
\elib{https://elibrary.ru/item.asp?id=9213509}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 2
\pages 81--90
\crossref{https://doi.org/10.1007/s10688-006-0014-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238498600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744820279}
Linking options:
  • https://www.mathnet.ru/eng/faa2
  • https://doi.org/10.4213/faa2
  • https://www.mathnet.ru/eng/faa/v40/i2/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :188
    References:41
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024