Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2002, Volume 36, Issue 3, Pages 1–8
DOI: https://doi.org/10.4213/faa199
(Mi faa199)
 

This article is cited in 9 scientific papers (total in 10 papers)

The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology

V. I. Arnol'dab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Université Paris-Dauphine
References:
Abstract: Upper bounds for ergodic averages of topological characteristics of pseudoperiodic functions and manifolds are found in terms of the degrees of trigonometric polynomials defining these functions and manifolds. The bounds are based on finding the longest trigonometric and spherical curves of a fixed degree.
Keywords: Betti numbers, ergodic theory, characteristic numbers, perihelion, quasicrystalls, Sturm theory, Morse theory.
Received: 07.05.2002
English version:
Functional Analysis and Its Applications, 2002, Volume 36, Issue 3, Pages 165–171
DOI: https://doi.org/10.1023/A:1020107203200
Bibliographic databases:
Document Type: Article
UDC: 517.938+512.7
Language: Russian
Citation: V. I. Arnol'd, “The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology”, Funktsional. Anal. i Prilozhen., 36:3 (2002), 1–8; Funct. Anal. Appl., 36:3 (2002), 165–171
Citation in format AMSBIB
\Bibitem{Arn02}
\by V.~I.~Arnol'd
\paper The Longest Curves of Given Degree and the Quasicrystallic Harnack Theorem in Pseudoperiodic Topology
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 3
\pages 1--8
\mathnet{http://mi.mathnet.ru/faa199}
\crossref{https://doi.org/10.4213/faa199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1935898}
\zmath{https://zbmath.org/?q=an:1084.58005}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 3
\pages 165--171
\crossref{https://doi.org/10.1023/A:1020107203200}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178488500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036375854}
Linking options:
  • https://www.mathnet.ru/eng/faa199
  • https://doi.org/10.4213/faa199
  • https://www.mathnet.ru/eng/faa/v36/i3/p1
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024