Abstract:
The Monge–Kantorovich problem (MKP) with given marginals defined on closed domains X⊂Rn, Y⊂Rm and a smooth cost function c:X×Y→R is considered. Conditions are obtained (both necessary ones and sufficient ones) for the optimality of a Monge solution generated by a smooth measure-preserving map f:X→Y. The proofs are based on an optimality criterion for a general MKP in terms of nonemptiness of the sets
Q0(ζ)={u∈RX:u(x)−u(z)⩽ζ(x,z) for all x,z∈X} for special functions ζ on X×X generated by c and f. Also, earlier results by the author are used when considering the
above-mentioned nonemptiness conditions for the case of smooth ζ.
Citation:
V. L. Levin, “Optimality Conditions for Smooth Monge Solutions of the Monge–Kantorovich problem”, Funktsional. Anal. i Prilozhen., 36:2 (2002), 38–44; Funct. Anal. Appl., 36:2 (2002), 114–119
\Bibitem{Lev02}
\by V.~L.~Levin
\paper Optimality Conditions for Smooth Monge Solutions of the Monge--Kantorovich problem
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 2
\pages 38--44
\mathnet{http://mi.mathnet.ru/faa189}
\crossref{https://doi.org/10.4213/faa189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1922017}
\zmath{https://zbmath.org/?q=an:1021.49029}
\elib{https://elibrary.ru/item.asp?id=14146864}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 2
\pages 114--119
\crossref{https://doi.org/10.1023/A:1015666422861}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176341200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036273401}
Linking options:
https://www.mathnet.ru/eng/faa189
https://doi.org/10.4213/faa189
https://www.mathnet.ru/eng/faa/v36/i2/p38
This publication is cited in the following 2 articles:
V. L. Levin, “Optimality conditions and exact solutions to the two-dimensional Monge–Kantorovich problem”, J. Math. Sci. (N. Y.), 133:4 (2006), 1456–1463
Vladimir L. Levin, Advances in Mathematical Economics, 6, Advances in Mathematical Economics, 2004, 85