Abstract:
The index of a finite-dimensional Lie algebra $\mathfrak{g}$ is the minimum of dimensions of the stabilizers $\mathfrak{g}_\alpha$ over all covectors $\alpha\in\mathfrak{g}^*$. Let $\mathfrak{g}$ be a reductive Lie algebra over a field $\mathbb{K}$ of characteristic $\ne2$. Élashvili conjectured that the index of $\mathfrak{g}_\alpha$ is always equal to the index, or, which is the same, the rank of $\mathfrak{g}$. In this article, Élashvili's conjecture is proved for classical Lie algebras. Furthermore, it is shown that if $\mathfrak{g}=\mathfrak{gl}_n$ or $\mathfrak{g}=\mathfrak{sp}_{2n}$ and $e\in\mathfrak{g}$ is a nilpotent element, then the coadjoint action of $\mathfrak{g}_e$ has a generic stabilizer. For $\mathfrak{g}=\mathfrak{so}_n$, we give examples of nilpotent elements $e\in\mathfrak{g}$ such that the coadjoint action of $\mathfrak{g}_e$ does not
have a generic stabilizer.
Citation:
O. S. Yakimova, “The Index of Centralizers of Elements in Classical Lie Algebras”, Funktsional. Anal. i Prilozhen., 40:1 (2006), 52–64; Funct. Anal. Appl., 40:1 (2006), 42–51
\Bibitem{Yak06}
\by O.~S.~Yakimova
\paper The Index of Centralizers of Elements in Classical Lie Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 1
\pages 52--64
\mathnet{http://mi.mathnet.ru/faa18}
\crossref{https://doi.org/10.4213/faa18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223249}
\zmath{https://zbmath.org/?q=an:1152.17001}
\elib{https://elibrary.ru/item.asp?id=9200286}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 1
\pages 42--51
\crossref{https://doi.org/10.1007/s10688-006-0005-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236532100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33644889076}
Linking options:
https://www.mathnet.ru/eng/faa18
https://doi.org/10.4213/faa18
https://www.mathnet.ru/eng/faa/v40/i1/p52
This publication is cited in the following 24 articles:
Panyushev I D. Yakimova O.S., “Poisson-Commutative Subalgebras and Complete Integrability on Non-Regular Coadjoint Orbits and Flag Varieties”, Math. Z., 295:1-2 (2020), 101–127
Vinberg E.B., Yakimova O.S., “Complete Families of Commuting Functions For Coisotropic Hamiltonian Actions”, Adv. Math., 348 (2019), 523–540
Molev A. Yakimova O., “Quantisation and Nilpotent Limits of Mishchenko-Fomenko Subalgebras”, Represent. Theory, 23 (2019), 350–378
Moreau A., “Centralizers of Nilpotent Elements and Related Problems, a Survey”, Perspectives in Lie Theory, Springer Indam Series, 19, ed. Callegaro F. Carnovale G. Caselli F. DeConcini C. DeSole A., Springer International Publishing Ag, 2017, 331–346
Charbonnel J.-Y., Moreau A., “the Symmetric Invariants of Centralizers and Slodowy Grading”, Math. Z., 282:1-2 (2016), 273–339
Futorny V. Molev A., “Quantization of the shift of argument subalgebras in type A”, Adv. Math., 285 (2015), 1358–1375
Topley L.W., “Invariants of Centralisers in Positive Characteristic”, J. Algebra, 399 (2014), 1021–1050
Premet A., Topley L., “Derived Subalgebras of Centralisers and Finite W-Algebras”, Compos. Math., 150:9 (2014), 1485–1548
de Graaf W.A. Yakimova O.S., “Good Index Behaviour of Theta-Representations, I”, Algebr. Represent. Theory, 15:4 (2012), 613–638
Fomenko A.T. Konyaev A.Yu., “New Approach to Symmetries and Singularities in Integrable Hamiltonian Systems”, Topology Appl., 159:7, SI (2012), 1964–1975
Baur K., Moreau A., “Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras”, Ann. Inst. Fourier (Grenoble), 61:2 (2011), 417–451
Joseph A., Fauquant-Millet F., “Slices for biparabolics of index 1”, Transform. Groups, 16:4 (2011), 1081–1113
Joseph A., Shafrir D., “Polynomiality of invariants, unimodularity and adapted pairs”, Transform Groups, 15:4 (2010), 851–882
Righi C., Yu R.W.T., “On the index of the quotient of a Borel subalgebra by an ad-nilpotent ideal”, J. Lie Theory, 20:1 (2010), 49–63
Charbonnel J.-Y., Moreau A., “The index of centralizers of elements of reductive Lie algebras”, Doc. Math., 15 (2010), 387–421
Yakimova O., “Surprising properties of centralisers in classical Lie algebras”, Ann. Inst. Fourier (Grenoble), 59:3 (2009), 903–935
Panyushev D.I., Yakimova O.S., “The argument shift method and maximal commutative subalgebras of Poisson algebras”, Math. Res. Lett., 15:2 (2008), 239–249
Yu R.W.T., “On the sum of the index of a parabolic subalgebra and of its nilpotent radical”, Proc. Amer. Math. Soc., 136:5 (2008), 1515–1522
Moreau A., “On the dimension of the sheets of a reductive Lie algebra”, J. Lie Theory, 18:3 (2008), 671–696