Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 1, Pages 52–64
DOI: https://doi.org/10.4213/faa18
(Mi faa18)
 

This article is cited in 24 scientific papers (total in 24 papers)

The Index of Centralizers of Elements in Classical Lie Algebras

O. S. Yakimova

Independent University of Moscow
References:
Abstract: The index of a finite-dimensional Lie algebra $\mathfrak{g}$ is the minimum of dimensions of the stabilizers $\mathfrak{g}_\alpha$ over all covectors $\alpha\in\mathfrak{g}^*$. Let $\mathfrak{g}$ be a reductive Lie algebra over a field $\mathbb{K}$ of characteristic $\ne2$. Élashvili conjectured that the index of $\mathfrak{g}_\alpha$ is always equal to the index, or, which is the same, the rank of $\mathfrak{g}$. In this article, Élashvili's conjecture is proved for classical Lie algebras. Furthermore, it is shown that if $\mathfrak{g}=\mathfrak{gl}_n$ or $\mathfrak{g}=\mathfrak{sp}_{2n}$ and $e\in\mathfrak{g}$ is a nilpotent element, then the coadjoint action of $\mathfrak{g}_e$ has a generic stabilizer. For $\mathfrak{g}=\mathfrak{so}_n$, we give examples of nilpotent elements $e\in\mathfrak{g}$ such that the coadjoint action of $\mathfrak{g}_e$ does not have a generic stabilizer.
Received: 29.06.2004
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 1, Pages 42–51
DOI: https://doi.org/10.1007/s10688-006-0005-4
Bibliographic databases:
Document Type: Article
UDC: 512.815.1
Language: Russian
Citation: O. S. Yakimova, “The Index of Centralizers of Elements in Classical Lie Algebras”, Funktsional. Anal. i Prilozhen., 40:1 (2006), 52–64; Funct. Anal. Appl., 40:1 (2006), 42–51
Citation in format AMSBIB
\Bibitem{Yak06}
\by O.~S.~Yakimova
\paper The Index of Centralizers of Elements in Classical Lie Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 1
\pages 52--64
\mathnet{http://mi.mathnet.ru/faa18}
\crossref{https://doi.org/10.4213/faa18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223249}
\zmath{https://zbmath.org/?q=an:1152.17001}
\elib{https://elibrary.ru/item.asp?id=9200286}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 1
\pages 42--51
\crossref{https://doi.org/10.1007/s10688-006-0005-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236532100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33644889076}
Linking options:
  • https://www.mathnet.ru/eng/faa18
  • https://doi.org/10.4213/faa18
  • https://www.mathnet.ru/eng/faa/v40/i1/p52
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:723
    Full-text PDF :319
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024