Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 1, Pages 52–64
DOI: https://doi.org/10.4213/faa18
(Mi faa18)
 

This article is cited in 24 scientific papers (total in 24 papers)

The Index of Centralizers of Elements in Classical Lie Algebras

O. S. Yakimova

Independent University of Moscow
References:
Abstract: The index of a finite-dimensional Lie algebra $\mathfrak{g}$ is the minimum of dimensions of the stabilizers $\mathfrak{g}_\alpha$ over all covectors $\alpha\in\mathfrak{g}^*$. Let $\mathfrak{g}$ be a reductive Lie algebra over a field $\mathbb{K}$ of characteristic $\ne2$. Élashvili conjectured that the index of $\mathfrak{g}_\alpha$ is always equal to the index, or, which is the same, the rank of $\mathfrak{g}$. In this article, Élashvili's conjecture is proved for classical Lie algebras. Furthermore, it is shown that if $\mathfrak{g}=\mathfrak{gl}_n$ or $\mathfrak{g}=\mathfrak{sp}_{2n}$ and $e\in\mathfrak{g}$ is a nilpotent element, then the coadjoint action of $\mathfrak{g}_e$ has a generic stabilizer. For $\mathfrak{g}=\mathfrak{so}_n$, we give examples of nilpotent elements $e\in\mathfrak{g}$ such that the coadjoint action of $\mathfrak{g}_e$ does not have a generic stabilizer.
Received: 29.06.2004
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 1, Pages 42–51
DOI: https://doi.org/10.1007/s10688-006-0005-4
Bibliographic databases:
Document Type: Article
UDC: 512.815.1
Language: Russian
Citation: O. S. Yakimova, “The Index of Centralizers of Elements in Classical Lie Algebras”, Funktsional. Anal. i Prilozhen., 40:1 (2006), 52–64; Funct. Anal. Appl., 40:1 (2006), 42–51
Citation in format AMSBIB
\Bibitem{Yak06}
\by O.~S.~Yakimova
\paper The Index of Centralizers of Elements in Classical Lie Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 1
\pages 52--64
\mathnet{http://mi.mathnet.ru/faa18}
\crossref{https://doi.org/10.4213/faa18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223249}
\zmath{https://zbmath.org/?q=an:1152.17001}
\elib{https://elibrary.ru/item.asp?id=9200286}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 1
\pages 42--51
\crossref{https://doi.org/10.1007/s10688-006-0005-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236532100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33644889076}
Linking options:
  • https://www.mathnet.ru/eng/faa18
  • https://doi.org/10.4213/faa18
  • https://www.mathnet.ru/eng/faa/v40/i1/p52
  • This publication is cited in the following 24 articles:
    1. Panyushev I D. Yakimova O.S., “Poisson-Commutative Subalgebras and Complete Integrability on Non-Regular Coadjoint Orbits and Flag Varieties”, Math. Z., 295:1-2 (2020), 101–127  crossref  mathscinet  zmath  isi
    2. Vinberg E.B., Yakimova O.S., “Complete Families of Commuting Functions For Coisotropic Hamiltonian Actions”, Adv. Math., 348 (2019), 523–540  crossref  mathscinet  zmath  isi  scopus
    3. Molev A. Yakimova O., “Quantisation and Nilpotent Limits of Mishchenko-Fomenko Subalgebras”, Represent. Theory, 23 (2019), 350–378  crossref  mathscinet  zmath  isi  scopus
    4. Moreau A., “Centralizers of Nilpotent Elements and Related Problems, a Survey”, Perspectives in Lie Theory, Springer Indam Series, 19, ed. Callegaro F. Carnovale G. Caselli F. DeConcini C. DeSole A., Springer International Publishing Ag, 2017, 331–346  crossref  mathscinet  zmath  isi  scopus
    5. Bolsinov A.V., Zhang P., “Jordan-Kronecker Invariants of Finite-Dimensional Lie Algebras”, Transform. Groups, 21:1 (2016), 51–86  crossref  mathscinet  zmath  isi  scopus
    6. Charbonnel J.-Y., Moreau A., “the Symmetric Invariants of Centralizers and Slodowy Grading”, Math. Z., 282:1-2 (2016), 273–339  crossref  mathscinet  zmath  isi  scopus
    7. Futorny V. Molev A., “Quantization of the shift of argument subalgebras in type A”, Adv. Math., 285 (2015), 1358–1375  crossref  mathscinet  zmath  isi  elib  scopus
    8. Topley L.W., “Invariants of Centralisers in Positive Characteristic”, J. Algebra, 399 (2014), 1021–1050  crossref  mathscinet  zmath  isi  scopus
    9. Premet A., Topley L., “Derived Subalgebras of Centralisers and Finite W-Algebras”, Compos. Math., 150:9 (2014), 1485–1548  crossref  mathscinet  zmath  isi  scopus
    10. de Graaf W.A. Yakimova O.S., “Good Index Behaviour of Theta-Representations, I”, Algebr. Represent. Theory, 15:4 (2012), 613–638  crossref  mathscinet  zmath  isi  elib  scopus
    11. Fomenko A.T. Konyaev A.Yu., “New Approach to Symmetries and Singularities in Integrable Hamiltonian Systems”, Topology Appl., 159:7, SI (2012), 1964–1975  crossref  mathscinet  zmath  isi  elib  scopus
    12. Baur K., Moreau A., “Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras”, Ann. Inst. Fourier (Grenoble), 61:2 (2011), 417–451  crossref  mathscinet  zmath  isi  scopus
    13. Joseph A., Fauquant-Millet F., “Slices for biparabolics of index 1”, Transform. Groups, 16:4 (2011), 1081–1113  crossref  mathscinet  zmath  isi  elib  scopus
    14. Joseph A., Shafrir D., “Polynomiality of invariants, unimodularity and adapted pairs”, Transform Groups, 15:4 (2010), 851–882  crossref  mathscinet  zmath  isi  elib  scopus
    15. Righi C., Yu R.W.T., “On the index of the quotient of a Borel subalgebra by an ad-nilpotent ideal”, J. Lie Theory, 20:1 (2010), 49–63  mathscinet  zmath  isi  elib
    16. Charbonnel J.-Y., Moreau A., “The index of centralizers of elements of reductive Lie algebras”, Doc. Math., 15 (2010), 387–421  mathscinet  zmath  isi  elib
    17. Yakimova O., “Surprising properties of centralisers in classical Lie algebras”, Ann. Inst. Fourier (Grenoble), 59:3 (2009), 903–935  crossref  mathscinet  zmath  isi  scopus
    18. Panyushev D.I., Yakimova O.S., “The argument shift method and maximal commutative subalgebras of Poisson algebras”, Math. Res. Lett., 15:2 (2008), 239–249  crossref  mathscinet  zmath  isi  elib  scopus
    19. Yu R.W.T., “On the sum of the index of a parabolic subalgebra and of its nilpotent radical”, Proc. Amer. Math. Soc., 136:5 (2008), 1515–1522  crossref  mathscinet  zmath  isi  elib  scopus
    20. Moreau A., “On the dimension of the sheets of a reductive Lie algebra”, J. Lie Theory, 18:3 (2008), 671–696  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:783
    Full-text PDF :335
    References:87
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025