Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2002, Volume 36, Issue 1, Pages 36–58
DOI: https://doi.org/10.4213/faa177
(Mi faa177)
 

This article is cited in 17 scientific papers (total in 17 papers)

Sharp Pointwise Interpolation Inequalities for Derivatives

V. G. Maz'ya, T. O. Shaposhnikova

Linköping University
References:
Abstract: We prove new pointwise inequalities involving the gradient of a function $u\in C^1(\mathbb{R}^n)$, the modulus of continuity $\omega$ of the gradient $\nabla u$, and a certain maximal function $\mathcal{M}^{\diamond}u$ and show that these inequalities are sharp. A simple particular case corresponding to $n=1$ and $\omega(r)=r$ is the Landau type inequality
$$ |u'(x)|^2\le\frac83\,\mathcal{M}^{\diamond}u(x)\mathcal{M}^{\diamond}u''(x), $$
where the constant $8/3$ is best possible and
$$ \mathcal{M}^{\diamond}u(x)=\sup_{r>0}\frac1{2r}\bigg|\int_{x-r}^{x+r}\operatorname{sign}(y-x)u(y)\,dy\bigg|. $$
Received: 20.08.2001
English version:
Functional Analysis and Its Applications, 2002, Volume 36, Issue 1, Pages 30–48
DOI: https://doi.org/10.1023/A:1014478100799
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. G. Maz'ya, T. O. Shaposhnikova, “Sharp Pointwise Interpolation Inequalities for Derivatives”, Funktsional. Anal. i Prilozhen., 36:1 (2002), 36–58; Funct. Anal. Appl., 36:1 (2002), 30–48
Citation in format AMSBIB
\Bibitem{MazSha02}
\by V.~G.~Maz'ya, T.~O.~Shaposhnikova
\paper Sharp Pointwise Interpolation Inequalities for Derivatives
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 1
\pages 36--58
\mathnet{http://mi.mathnet.ru/faa177}
\crossref{https://doi.org/10.4213/faa177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1898982}
\zmath{https://zbmath.org/?q=an:1034.42018}
\elib{https://elibrary.ru/item.asp?id=5025008}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 1
\pages 30--48
\crossref{https://doi.org/10.1023/A:1014478100799}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174777000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513834}
Linking options:
  • https://www.mathnet.ru/eng/faa177
  • https://doi.org/10.4213/faa177
  • https://www.mathnet.ru/eng/faa/v36/i1/p36
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:585
    Full-text PDF :180
    References:97
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024