Citation:
M. G. Gasymov, “Spectral analysis of a class of second-order non-self-adjoint differential operators”, Funktsional. Anal. i Prilozhen., 14:1 (1980), 14–19; Funct. Anal. Appl., 14:1 (1980), 11–15
\Bibitem{Gas80}
\by M.~G.~Gasymov
\paper Spectral analysis of a class of second-order non-self-adjoint differential operators
\jour Funktsional. Anal. i Prilozhen.
\yr 1980
\vol 14
\issue 1
\pages 14--19
\mathnet{http://mi.mathnet.ru/faa1764}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=565091}
\zmath{https://zbmath.org/?q=an:0574.34012}
\transl
\jour Funct. Anal. Appl.
\yr 1980
\vol 14
\issue 1
\pages 11--15
\crossref{https://doi.org/10.1007/BF01078408}
Linking options:
https://www.mathnet.ru/eng/faa1764
https://www.mathnet.ru/eng/faa/v14/i1/p14
This publication is cited in the following 55 articles:
Shams Annaghili, Rakib Efendiev, Davron Aslonqulovich Juraev, Mohamed Abdalla, “Spectral analysis for the almost periodic quadratic pencil with impulse”, Bound Value Probl, 2025:1 (2025)
Masahiro Kaminaga, “Perturbation of discriminant for one-dimensional discrete Schrödinger operator with complex-valued sparse periodic potential”, Tohoku Math. J. (2), 77:1 (2025)
Hui Lu, Jiangong You, “Global structure of spectra of periodic non-Hermitian Jacobi operators”, Sci. China Math., 2024
C. Nur, “Computing Periodic and Antiperiodic Eigenvalues with a PT-Symmetric Optical Potential”, Math. Notes, 114:6 (2023), 1401–1417
Cemile NUR, “Computing Eigenvalues of Sturm–Liouville Operators with a Family of Trigonometric Polynomial Potentials”, Mathematical Sciences and Applications E-Notes, 11:1 (2023), 29
A. Kh. Khanmamedov, D. H. Orudjov, “On transformation operators for the Schrödinger equation with an additional periodic complex potential”, Bol. Soc. Mat. Mex., 29:2 (2023)
P. B. Djakov, B. S. Mityagin, “Spectral triangles of non-selfadjoint Hill and Dirac operators”, Russian Math. Surveys, 75:4 (2020), 587–626
O. A. Veliev, “Spectral analysis of the Schrödinger operator with a PT-symmetric periodic optical potential”, Journal of Mathematical Physics, 61:6 (2020)
Veliev O., “Spectral Expansion Series With Parenthesis For the Nonself-Adjoint Periodic Differential Operators”, Commun. Pure Appl. Anal, 18:1 (2019), 397–424
İlker Arslan, “Characterization of the potential smoothness of one-dimensional Dirac operator subject to general boundary conditions and its Riesz basis property”, Journal of Mathematical Analysis and Applications, 447:1 (2017), 84
Vladimir V. Konotop, Jianke Yang, Dmitry A. Zezyulin, “Nonlinear waves inPT-symmetric systems”, Rev. Mod. Phys., 88:3 (2016)
Ashraf D Orujov, “On the spectrum of the quadratic pencil of differential operators with periodic coefficients on the semi-axis”, Bound Value Probl, 2015:1 (2015)
Ashraf D Orujov, “On the spectrum of the pencil of high order differential operators with almost periodic coefficients”, Bound Value Probl, 2015:1 (2015)
O.A. Veliev, “Spectral problems of a class of non-self-adjoint one-dimensional Schrodinger operators”, Journal of Mathematical Analysis and Applications, 422:2 (2015), 1390
Ali Mostafazadeh, “Transfer matrices as nonunitarySmatrices, multimode unidirectional invisibility, and perturbative inverse scattering”, Phys. Rev. A, 89:1 (2014)
Oktay Veliev, “Asymptotic analysis of non-self-adjoint Hill operators”, Open Mathematics, 11:12 (2013)
Ahmet Batal, “Characterization of potential smoothness and the Riesz basis property of the Hill–Schrödinger operator in terms of periodic, antiperiodic and Neumann spectra”, Journal of Mathematical Analysis and Applications, 405:2 (2013), 453
Ali Mostafazadeh, “Invisibility andPTsymmetry”, Phys. Rev. A, 87:1 (2013)
Djakov P., Mityagin B., “Criteria for Existence of Riesz Bases Consisting of Root Functions of Hill and 1D Dirac Operators”, J. Funct. Anal., 263:8 (2012), 2300–2332