Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2002, Volume 36, Issue 1, Pages 30–35
DOI: https://doi.org/10.4213/faa176
(Mi faa176)
 

This article is cited in 8 scientific papers (total in 8 papers)

Diffeomorphisms of the Circle and the Beurling–Helson Theorem

V. V. Lebedev

Moscow State Institute of Electronics and Mathematics (Technical University)
Full-text PDF (117 kB) Citations (8)
References:
Abstract: We consider the algebra $A(\mathbb{T})$ of absolutely convergent Fourier series on the circle $\mathbb{T}$. According to the Beurling–Helson theorem, the condition $\|e^{in\varphi}\|_A=O(1)$, $n\in\mathbb{Z}$, implies that $\varphi$ is trivial: $\varphi(t)=mt+\alpha$. We construct a nontrivial diffeomorphism $\varphi$ of $\mathbb{T}$ onto itself such that $\|e^{in\varphi}\|_A=O(\gamma(|n|)\log|n|)$, where $\gamma(n)$ is an arbitrary given sequence with $\gamma(n)\to+\infty$. By analogy with a conjecture due to Kahane, it is natural to suppose that this rate of growth is the slowest possible.
Received: 28.12.2000
English version:
Functional Analysis and Its Applications, 2002, Volume 36, Issue 1, Pages 25–29
DOI: https://doi.org/10.1023/A:1014426116729
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: V. V. Lebedev, “Diffeomorphisms of the Circle and the Beurling–Helson Theorem”, Funktsional. Anal. i Prilozhen., 36:1 (2002), 30–35; Funct. Anal. Appl., 36:1 (2002), 25–29
Citation in format AMSBIB
\Bibitem{Leb02}
\by V.~V.~Lebedev
\paper Diffeomorphisms of the Circle and the Beurling--Helson Theorem
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 1
\pages 30--35
\mathnet{http://mi.mathnet.ru/faa176}
\crossref{https://doi.org/10.4213/faa176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1898981}
\zmath{https://zbmath.org/?q=an:1022.43004}
\elib{https://elibrary.ru/item.asp?id=5025007}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 1
\pages 25--29
\crossref{https://doi.org/10.1023/A:1014426116729}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174777000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036251486}
Linking options:
  • https://www.mathnet.ru/eng/faa176
  • https://doi.org/10.4213/faa176
  • https://www.mathnet.ru/eng/faa/v36/i1/p30
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :228
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024