Abstract:
We derive, in several different ways, combinatorial identities which are multidimensional analogs of classical Dougall's formula for a bilateral hypergeometric series of the type 2H2. These identities have a representation-theoretic meaning. They make it possible to construct concrete examples of spherical functions on inductive limits of symmetric spaces. These spherical functions are of interest to harmonic analysis.
Citation:
G. I. Olshanskii, “Probability Measures on Dual Objects to Compact Symmetric Spaces and Hypergeometric Identities”, Funktsional. Anal. i Prilozhen., 37:4 (2003), 49–73; Funct. Anal. Appl., 37:4 (2003), 281–301
Grigori Olshanski, “Macdonald-Level Extension of Beta Ensembles and Large-N Limit Transition”, Commun. Math. Phys., 385:1 (2021), 595
Guionnet A. Huang J., “Rigidity and Edge Universality of Discrete Beta-Ensembles”, Commun. Pure Appl. Math., 72:9 (2019), 1875–1982
Borodin A., Gorin V., Guionnet A., “Gaussian Asymptotics of Discrete Beta-Ensembles”, Publ. Math. IHES, 2017, no. 125, 1–78
Gorin V., Olshanski G., “a Quantization of the Harmonic Analysis on the Infinite-Dimensional Unitary Group”, J. Funct. Anal., 270:1 (2016), 375–418
Fyodorov Ya.V., Le Doussal P., “Moments of the Position of the Maximum for GUE Characteristic Polynomials and for Log-Correlated Gaussian Processes”, J. Stat. Phys., 164:1 (2016), 190–240
J. Math. Sci. (N. Y.), 215:6 (2016), 755–768
V. Gorin, G. I. Olshanskii, “Determinantal Measures Related to Big q-Jacobi Polynomials”, Funct. Anal. Appl., 49:3 (2015), 214–217
G. I. Olshanskii, A. A. Osinenko, “Multivariate Jacobi Polynomials and the Selberg Integral”, Funct. Anal. Appl., 46:4 (2012), 262–278
S. V. Kerov, “Multidimensional hypergeometric distribution, and characters of the unitary group”, J. Math. Sci. (N. Y.), 129:2 (2005), 3697–3729