Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2003, Volume 37, Issue 4, Pages 13–26
DOI: https://doi.org/10.4213/faa165
(Mi faa165)
 

This article is cited in 11 scientific papers (total in 11 papers)

Egorov Hydrodynamic Chains, the Chazy Equation, and SL(2,C)

V. M. Buchstabera, D. V. Leikinb, M. V. Pavlovc

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Magnetism, National Academy of Sciences of Ukraine
c Loughborough University
References:
Abstract: The general solution of the system of differential equations describing Egorov hydrodynamic chains is constructed. The solution is given in terms of the elliptic sigma function. Invariants of the sigma function are expressed as differential polynomials in a solution of the Chazy equation. The orbits of the induced action of SL(2,C) and degenerating operators in the space of solutions are described.
Keywords: hydrodynamic chain, Egorov type system, Chazy equation, elliptic function, SL(2).
Received: 15.09.2003
English version:
Functional Analysis and Its Applications, 2003, Volume 37, Issue 4, Pages 251–262
DOI: https://doi.org/10.1023/B:FAIA.0000015576.05085.bc
Bibliographic databases:
Document Type: Article
UDC: 514.7
Language: Russian
Citation: V. M. Buchstaber, D. V. Leikin, M. V. Pavlov, “Egorov Hydrodynamic Chains, the Chazy Equation, and SL(2,C)”, Funktsional. Anal. i Prilozhen., 37:4 (2003), 13–26; Funct. Anal. Appl., 37:4 (2003), 251–262
Citation in format AMSBIB
\Bibitem{BucLeiPav03}
\by V.~M.~Buchstaber, D.~V.~Leikin, M.~V.~Pavlov
\paper Egorov Hydrodynamic Chains, the Chazy Equation, and $SL(2,\mathbb{C})$
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 4
\pages 13--26
\mathnet{http://mi.mathnet.ru/faa165}
\crossref{https://doi.org/10.4213/faa165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2083228}
\zmath{https://zbmath.org/?q=an:1075.37527}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 4
\pages 251--262
\crossref{https://doi.org/10.1023/B:FAIA.0000015576.05085.bc}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220166300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3543020366}
Linking options:
  • https://www.mathnet.ru/eng/faa165
  • https://doi.org/10.4213/faa165
  • https://www.mathnet.ru/eng/faa/v37/i4/p13
  • This publication is cited in the following 11 articles:
    1. Ferapontov E.V., Pavlov M.V., Xue L., “Second-Order Integrable Lagrangians and Wdvv Equations”, Lett. Math. Phys., 111:2 (2021), 58  crossref  mathscinet  isi
    2. Clery F., Ferapontov V E., “Dispersionless Hirota Equations and the Genus 3 Hyperelliptic Divisor”, Commun. Math. Phys., 376:2 (2020), 1397–1412  crossref  mathscinet  isi
    3. I. Kh. Sabitov, “The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research”, Trans. Moscow Math. Soc., 77 (2016), 149–175  mathnet  crossref  elib
    4. Brezhnev Yu.V., “Non-Canonical Extension of Theta-Functions and Modular Integrability of Theta-Constants”, Proc. R. Soc. Edinb. Sect. A-Math., 143:4 (2013), 689–738  crossref  mathscinet  zmath  isi  scopus
    5. E. Yu. Bunkova, V. M. Buchstaber, “Polynomial Dynamical Systems and Ordinary Differential Equations Associated with the Heat Equation”, Funct. Anal. Appl., 46:3 (2012), 173–190  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. Evgeny Vladimirovich Ferapontov, Lenos Hadjikos, Karima Robertovna Khusnutdinova, “Integrable Equations of the Dispersionless Hirota type and Hypersurfaces in the Lagrangian Grassmannian”, International Mathematics Research Notices, 2010:3 (2010), 496  crossref
    7. E. Yu. Bunkova, V. M. Buchstaber, “Heat Equations and Families of Two-Dimensional Sigma Functions”, Proc. Steklov Inst. Math., 266 (2009), 1–28  mathnet  crossref  mathscinet  zmath  isi  elib
    8. Buchstaber V.M., “Heat Equations and Sigma Functions”, Geometric Methods in Physics, AIP Conference Proceedings, 1191, 2009, 46–58  crossref  adsnasa  isi  scopus
    9. Ferapontov, EV, “Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor”, Mathematische Annalen, 339:1 (2007), 61  crossref  mathscinet  zmath  isi  elib  scopus
    10. Michael Trott, The Mathematica GuideBook for Numerics, 2006, 1  crossref
    11. E. V. Ferapontov, K. R. Khusnutdinova, M. V. Pavlov, “Classification of Integrable $(2+1)$-Dimensional Quasilinear Hierarchies”, Theoret. and Math. Phys., 144:1 (2005), 907–915  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:958
    Full-text PDF :456
    References:104
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025