Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1983, Volume 17, Issue 3, Pages 71–72 (Mi faa1560)  

This article is cited in 13 scientific papers (total in 13 papers)

Brief communications

Asymptotic behavior of eigenfunctions of the Sturm–Liouville spectral problem

M. M. Gekhtman, Yu. M. Zagiriv, V. Ya. Yakubov
References:
Received: 13.05.1982
English version:
Functional Analysis and Its Applications, 1983, Volume 17, Issue 3, Pages 221–223
DOI: https://doi.org/10.1007/BF01078108
Bibliographic databases:
Document Type: Article
UDC: 517.43
Language: Russian
Citation: M. M. Gekhtman, Yu. M. Zagiriv, V. Ya. Yakubov, “Asymptotic behavior of eigenfunctions of the Sturm–Liouville spectral problem”, Funktsional. Anal. i Prilozhen., 17:3 (1983), 71–72; Funct. Anal. Appl., 17:3 (1983), 221–223
Citation in format AMSBIB
\Bibitem{GekZagYak83}
\by M.~M.~Gekhtman, Yu.~M.~Zagiriv, V.~Ya.~Yakubov
\paper Asymptotic behavior of eigenfunctions of the Sturm--Liouville spectral problem
\jour Funktsional. Anal. i Prilozhen.
\yr 1983
\vol 17
\issue 3
\pages 71--72
\mathnet{http://mi.mathnet.ru/faa1560}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=714226}
\zmath{https://zbmath.org/?q=an:0569.34020|0599.34027}
\transl
\jour Funct. Anal. Appl.
\yr 1983
\vol 17
\issue 3
\pages 221--223
\crossref{https://doi.org/10.1007/BF01078108}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SK12000012}
Linking options:
  • https://www.mathnet.ru/eng/faa1560
  • https://www.mathnet.ru/eng/faa/v17/i3/p71
  • This publication is cited in the following 13 articles:
    1. Leonid V. Kritskov, Springer Proceedings in Mathematics & Statistics, 216, Functional Analysis in Interdisciplinary Applications, 2017, 245  crossref
    2. Aigunov G.A., Zhvamer K.Kh., “K voprosu o nepreryvnoi zavisimosti sobstvennykh chisel i sobstvennykh funktsii zadachi T. Redzhe ot summiruemoi vesovoi funktsii”, Vestn. Dagestanskogo gos. un-ta, 2009, no. 1, 36–44
    3. Ya. G. Buchaev, “Estimates for the norms of the eigenfunctions of the Sturm–Liouville problem in various spaces”, Russian Math. (Iz. VUZ), 48:5 (2004), 11–21  mathnet  mathscinet  zmath  elib
    4. Ya. G. Buchaev, “Estimates of Norms of Eigenfunctions of the Strum–Liouville Problem in Sobolev Spaces”, Math. Notes, 73:4 (2003), 582–584  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. G. A. Aigunov, “On a criterion for uniform boundedness of normalized eigenfunctions of the Sturm–Liouville operator with a positive weight function on a finite interval”, Russian Math. Surveys, 52:2 (1997), 387–389  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. G. A. Aigunov, M. M. Gekhtman, “On the question of maximal rate of growth of the system of eigenfunctions of the Sturm–Liouville operator with a continuous weight function on a finite interval”, Russian Math. Surveys, 52:3 (1997), 605–606  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. G. A. Aigunov, “A problem on the asymptotics of normalized eigenfunctions of the Sturm–Liouville operator on a finite interval”, Russian Math. Surveys, 52:6 (1997), 1283–1284  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. G. A. Aigunov, “On the boundedness of orthonormal eigenfunctions of a class of Sturm–Liouville operators with a weight function of unbounded variation on a finite interval”, Russian Math. Surveys, 51:2 (1996), 317–318  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. G. A. Aigunov, “On the boundedness problem for the set of orthonormal eigenfunctions for a class of Sturm–Liouville operators with a weight function of unbounded variation on a finite interval”, Math. Notes, 60:3 (1996), 321–323  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. M. M. Gekhtman, G. A. Aigunov, “On the problem of the estimation of the normalized eigenfunctions of the Sturm–Liouville operator with a positive weight function on a finite segment”, Russian Math. Surveys, 50:4 (1995), 814–815  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    11. M. M. Gekhtman, Yu. M. Zagiriv, “On the Maximal Possible Growth Rate for Normal Eigenfunctions of a Class of Sturm–Liouville Operators with Continuous Positive Weight Function”, Funct. Anal. Appl., 27:2 (1993), 145–146  mathnet  crossref  mathscinet  zmath  isi
    12. M. M. Gekhtman, Yu. M. Zagiriv, “On the maximal possible rate of growth of orthonormal eigenfunctions of a Sturm–Liouville operator with a continuous positive weight function”, Russian Math. Surveys, 47:3 (1992), 176–177  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    13. M. M. Gekhtman, “On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval”, Math. USSR-Sb., 61:1 (1988), 185–199  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :129
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025