|
Brief communications
Preduals of von Neumann Algebras
A. I. Shtern M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Proofs of two assertions are sketched. 1) If the Banach space of a von Neumann algebra $\mathfrak A$ is the third dual of some Banach space, then the space $\mathfrak A$ is isometrically isomorphic to the second dual of some von Neumann algebra $A$ and the von Neumann algebra $A$ is uniquely determined by its enveloping von Neumann algebra (up to von Neumann algebra isomorphism) and is the unique second predual of $\mathfrak A$ (up to isometric isomorphism of Banach spaces). 2) An infinite-dimensional von Neumann algebra cannot have
preduals of all orders.
Keywords:
von Neumann algebra, Banach space, dual, predual.
Received: 18.11.2002
Citation:
A. I. Shtern, “Preduals of von Neumann Algebras”, Funktsional. Anal. i Prilozhen., 37:2 (2003), 92–94; Funct. Anal. Appl., 37:2 (2003), 157–159
Linking options:
https://www.mathnet.ru/eng/faa153https://doi.org/10.4213/faa153 https://www.mathnet.ru/eng/faa/v37/i2/p92
|
|