Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2003, Volume 37, Issue 2, Pages 92–94
DOI: https://doi.org/10.4213/faa153
(Mi faa153)
 

Brief communications

Preduals of von Neumann Algebras

A. I. Shtern

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Proofs of two assertions are sketched. 1) If the Banach space of a von Neumann algebra $\mathfrak A$ is the third dual of some Banach space, then the space $\mathfrak A$ is isometrically isomorphic to the second dual of some von Neumann algebra $A$ and the von Neumann algebra $A$ is uniquely determined by its enveloping von Neumann algebra (up to von Neumann algebra isomorphism) and is the unique second predual of $\mathfrak A$ (up to isometric isomorphism of Banach spaces). 2) An infinite-dimensional von Neumann algebra cannot have preduals of all orders.
Keywords: von Neumann algebra, Banach space, dual, predual.
Received: 18.11.2002
English version:
Functional Analysis and Its Applications, 2003, Volume 37, Issue 2, Pages 157–159
DOI: https://doi.org/10.1023/A:1024417325676
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. I. Shtern, “Preduals of von Neumann Algebras”, Funktsional. Anal. i Prilozhen., 37:2 (2003), 92–94; Funct. Anal. Appl., 37:2 (2003), 157–159
Citation in format AMSBIB
\Bibitem{Sht03}
\by A.~I.~Shtern
\paper Preduals of von Neumann Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 2
\pages 92--94
\mathnet{http://mi.mathnet.ru/faa153}
\crossref{https://doi.org/10.4213/faa153}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1994468}
\zmath{https://zbmath.org/?q=an:1053.46039}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 2
\pages 157--159
\crossref{https://doi.org/10.1023/A:1024417325676}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184635000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0345865361}
Linking options:
  • https://www.mathnet.ru/eng/faa153
  • https://doi.org/10.4213/faa153
  • https://www.mathnet.ru/eng/faa/v37/i2/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024