Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2003, Volume 37, Issue 2, Pages 90–91
DOI: https://doi.org/10.4213/faa152
(Mi faa152)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Spectral Components of Operators with Spectrum on a Curve

A. S. Tikhonov

Vernadskiy Tavricheskiy National University
Full-text PDF (84 kB) Citations (1)
References:
Abstract: Trace class perturbations of normal operators with spectrum on a curve and spectral components of such operators are studied. We establish duality relations for the spectral components of an operator and its adjoint. The generalized Sz.-Nagy–Foiaş–Naboko functional model introduced in the paper is a basic tool for this theorem. The results have applications in nonself-adjoint scattering theory and to extreme factorizations of $J$-contraction-valued functions ($J$-inner-outer and $A$-regular-singular factorizations).
Keywords: spectral component, spectrum, operator, functional model.
Received: 11.03.2002
English version:
Functional Analysis and Its Applications, 2003, Volume 37, Issue 2, Pages 155–156
DOI: https://doi.org/10.1023/A:1024465208838
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. S. Tikhonov, “Spectral Components of Operators with Spectrum on a Curve”, Funktsional. Anal. i Prilozhen., 37:2 (2003), 90–91; Funct. Anal. Appl., 37:2 (2003), 155–156
Citation in format AMSBIB
\Bibitem{Tik03}
\by A.~S.~Tikhonov
\paper Spectral Components of Operators with Spectrum on a Curve
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 2
\pages 90--91
\mathnet{http://mi.mathnet.ru/faa152}
\crossref{https://doi.org/10.4213/faa152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1994467}
\zmath{https://zbmath.org/?q=an:1053.47003}
\elib{https://elibrary.ru/item.asp?id=5219025}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 2
\pages 155--156
\crossref{https://doi.org/10.1023/A:1024465208838}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184635000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0345865362}
Linking options:
  • https://www.mathnet.ru/eng/faa152
  • https://doi.org/10.4213/faa152
  • https://www.mathnet.ru/eng/faa/v37/i2/p90
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024