Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2003, Volume 37, Issue 2, Pages 28–40
DOI: https://doi.org/10.4213/faa146
(Mi faa146)
 

This article is cited in 8 scientific papers (total in 8 papers)

The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies

O. I. Mokhov

Landau Institute for Theoretical Physics, Centre for Non-linear Studies
Full-text PDF (165 kB) Citations (8)
References:
Abstract: We reduce an arbitrary pair of compatible nonlocal Poisson brackets of hydrodynamic type generated by metrics of constant Riemannian curvature (compatible Mokhov–Ferapontov brackets) to a canonical form, find an integrable system describing all such pairs, and, for an arbitrary solution of this integrable system, i.e., for any pair of compatible Poisson brackets in question, construct (in closed form) integrable bi-Hamiltonian systems of hydrodynamic type possessing this pair of compatible Poisson brackets of hydrodynamic type. The corresponding special canonical forms of metrics of constant Riemannian curvature are considered. A theory of special Liouville coordinates for Poisson brackets is developed. We prove that the classification of these compatible Poisson brackets is equivalent to the classification of special Liouville coordinates for Mokhov–Ferapontov brackets.
Keywords: metric of constant curvature, integrable hierarchy, system of hydrodynamic type, bi-Hamiltonian system, compatible Poisson brackets, Poisson bracket of hydrodynamic type, compatible metrics, flat pencil of metrics, Liouville bracket, Liouville coordinates.
Received: 09.04.2002
English version:
Functional Analysis and Its Applications, 2003, Volume 37, Issue 2, Pages 103–113
DOI: https://doi.org/10.1023/A:1024469316049
Bibliographic databases:
Document Type: Article
UDC: 514.7+517.956.35
Language: Russian
Citation: O. I. Mokhov, “The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies”, Funktsional. Anal. i Prilozhen., 37:2 (2003), 28–40; Funct. Anal. Appl., 37:2 (2003), 103–113
Citation in format AMSBIB
\Bibitem{Mok03}
\by O.~I.~Mokhov
\paper The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies
\jour Funktsional. Anal. i Prilozhen.
\yr 2003
\vol 37
\issue 2
\pages 28--40
\mathnet{http://mi.mathnet.ru/faa146}
\crossref{https://doi.org/10.4213/faa146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1994461}
\zmath{https://zbmath.org/?q=an:1043.37049}
\elib{https://elibrary.ru/item.asp?id=13416969}
\transl
\jour Funct. Anal. Appl.
\yr 2003
\vol 37
\issue 2
\pages 103--113
\crossref{https://doi.org/10.1023/A:1024469316049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184635000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0346496350}
Linking options:
  • https://www.mathnet.ru/eng/faa146
  • https://doi.org/10.4213/faa146
  • https://www.mathnet.ru/eng/faa/v37/i2/p28
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:591
    Full-text PDF :277
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024