Citation:
A. Böttcher, “Reduction method for Wiener–Hopf integral operators with piecewise continuous symbols in $L_p$ spaces”, Funktsional. Anal. i Prilozhen., 18:2 (1984), 55–56; Funct. Anal. Appl., 18:2 (1984), 132–133
\Bibitem{Bot84}
\by A.~B\"ottcher
\paper Reduction method for Wiener--Hopf integral operators with piecewise continuous symbols in $L_p$ spaces
\jour Funktsional. Anal. i Prilozhen.
\yr 1984
\vol 18
\issue 2
\pages 55--56
\mathnet{http://mi.mathnet.ru/faa1449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=745701}
\zmath{https://zbmath.org/?q=an:0574.45007}
\transl
\jour Funct. Anal. Appl.
\yr 1984
\vol 18
\issue 2
\pages 132--133
\crossref{https://doi.org/10.1007/BF01077825}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TY93700006}
Linking options:
https://www.mathnet.ru/eng/faa1449
https://www.mathnet.ru/eng/faa/v18/i2/p55
This publication is cited in the following 2 articles:
H. Mascarenhas, P. A. Santos, M. Seidel, “Approximation sequences to operators on Banach spaces: a rich approach”, J. London Math. Soc., 96:1 (2017), 86
Helena Mascarenhas, Pedro A. Santos, Markus Seidel, “Quasi-banded operators, convolutions with almost periodic or quasi-continuous data, and their approximations”, Journal of Mathematical Analysis and Applications, 418:2 (2014), 938