Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 4, Pages 82–86
DOI: https://doi.org/10.4213/faa129
(Mi faa129)
 

Brief communications

Regular Mittag-Leffler Kernels and Volterra Operators

G. M. Gubreev

South Ukrainian State K. D. Ushynsky Pedagogical University
References:
Abstract: We give the definition of an abstract Mittag-Leffler kernel $\mathcal{E}_\rho$ ranging in a separable Hilbert space $\mathfrak{H}$. In the simplest case, $\mathcal{E}_\rho(z)$ can be expressed via the Mittag-Leffler function $E_\rho(z,\mu)$. The kernel $\mathcal{E}_\rho$ is said to be $c$-regular if it generates an integral transform of Fourier–Dzhrbashyan type and $d$-regular if its range contains an unconditional basis of $\mathfrak{H}$. We give a complete description of $d$- and $c$-regular kernels, which permits us to answer a question posed by M. Krein. An application to the problem on the similarity of a rank one perturbation of a fractional power of a Volterra operator to a normal operator is considered.
Keywords: Mittag-Leffler kernel, Mittag-Leffler function, Fourier–Dzhrbashyan transform, rank one perturbation, Volterra operator, fractional power.
Received: 20.02.2003
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 4, Pages 305–308
DOI: https://doi.org/10.1007/s10688-005-0009-5
Bibliographic databases:
Document Type: Article
UDC: 517.43+513.88
Language: Russian
Citation: G. M. Gubreev, “Regular Mittag-Leffler Kernels and Volterra Operators”, Funktsional. Anal. i Prilozhen., 38:4 (2004), 82–86; Funct. Anal. Appl., 38:4 (2004), 305–308
Citation in format AMSBIB
\Bibitem{Gub04}
\by G.~M.~Gubreev
\paper Regular Mittag-Leffler Kernels and Volterra Operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 4
\pages 82--86
\mathnet{http://mi.mathnet.ru/faa129}
\crossref{https://doi.org/10.4213/faa129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2117511}
\zmath{https://zbmath.org/?q=an:1087.47036}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 4
\pages 305--308
\crossref{https://doi.org/10.1007/s10688-005-0009-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227247000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-15244354624}
Linking options:
  • https://www.mathnet.ru/eng/faa129
  • https://doi.org/10.4213/faa129
  • https://www.mathnet.ru/eng/faa/v38/i4/p82
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :209
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024