Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 4, Pages 36–54
DOI: https://doi.org/10.4213/faa125
(Mi faa125)
 

This article is cited in 40 scientific papers (total in 40 papers)

Contraction of Orbits in Random Dynamical Systems on the Circle

V. A. Kleptsynab, M. B. Nalskya

a M. V. Lomonosov Moscow State University
b Independent University of Moscow
References:
Abstract: The paper deals with a theoretical justification of the effect, observed in computer experiments, of convergence of orbits (without tending to any particular point) in random dynamical systems on the circle. The corresponding theorem is proved under certain assumptions satisfied, in particular, in some $C^1$-open domain in the space of random dynamical systems.
It follows from this theorem that the corresponding skew product has two invariant measurable sections, naturally called an attractor and a repeller. Moreover, it turns out that convergence of orbits and the uniqueness of a stationary measure, phenomena that are mutually exclusive in the case of a single map, typically coexist in random dynamical systems.
Keywords: dynamics on the circle, random dynamical system, skew product, attractor.
Received: 08.05.2002
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 4, Pages 267–282
DOI: https://doi.org/10.1007/s10688-005-0005-9
Bibliographic databases:
Document Type: Article
UDC: 517.938.5+519.214.7
Language: Russian
Citation: V. A. Kleptsyn, M. B. Nalsky, “Contraction of Orbits in Random Dynamical Systems on the Circle”, Funktsional. Anal. i Prilozhen., 38:4 (2004), 36–54; Funct. Anal. Appl., 38:4 (2004), 267–282
Citation in format AMSBIB
\Bibitem{KleNal04}
\by V.~A.~Kleptsyn, M.~B.~Nalsky
\paper Contraction of Orbits in Random Dynamical Systems on the Circle
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 4
\pages 36--54
\mathnet{http://mi.mathnet.ru/faa125}
\crossref{https://doi.org/10.4213/faa125}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2117507}
\zmath{https://zbmath.org/?q=an:1086.37026}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 4
\pages 267--282
\crossref{https://doi.org/10.1007/s10688-005-0005-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227247000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-15244353125}
Linking options:
  • https://www.mathnet.ru/eng/faa125
  • https://doi.org/10.4213/faa125
  • https://www.mathnet.ru/eng/faa/v38/i4/p36
    Erratum
    This publication is cited in the following 40 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:785
    Full-text PDF :316
    References:93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024