Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 4, Pages 22–35
DOI: https://doi.org/10.4213/faa124
(Mi faa124)
 

This article is cited in 1 scientific paper (total in 1 paper)

Newton Polytopes, Increments, and Roots of Systems of Matrix Functions for Finite-Dimensional Representations

B. Ya. Kazarnovskii

Scientific Technical Centre "Informregistr"
Full-text PDF (236 kB) Citations (1)
References:
Abstract: The asymptotic root distribution is computed for systems of matrix functions associated with finite-dimensional holomorphic representations of a Lie group. This distribution can be expressed via the increments of the representations involved. If the group is reductive, then the number of equations in the system can be arbitrary, from 1 to the dimension of the group. In this case, the computation results are stated in the language of convex geometry. These computations imply the previously known formulas for the density of the solution variety of a system of exponential equations as well as for the number of solutions of a polynomial system and, more generally, of a system formed by matrix functions of representations of a complex reductive Lie group.
Keywords: matrix function, increment, holomorphic representation, reductive Lie group, Lie algebra, current, asymptotic density, tropical ring, convex polytope.
Received: 05.07.2002
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 4, Pages 256–266
DOI: https://doi.org/10.1007/s10688-005-0004-x
Bibliographic databases:
Document Type: Article
UDC: 512.7+514.172
Language: Russian
Citation: B. Ya. Kazarnovskii, “Newton Polytopes, Increments, and Roots of Systems of Matrix Functions for Finite-Dimensional Representations”, Funktsional. Anal. i Prilozhen., 38:4 (2004), 22–35; Funct. Anal. Appl., 38:4 (2004), 256–266
Citation in format AMSBIB
\Bibitem{Kaz04}
\by B.~Ya.~Kazarnovskii
\paper Newton Polytopes, Increments, and Roots of Systems of Matrix Functions for Finite-Dimensional Representations
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 4
\pages 22--35
\mathnet{http://mi.mathnet.ru/faa124}
\crossref{https://doi.org/10.4213/faa124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2117506}
\zmath{https://zbmath.org/?q=an:1075.22003}
\elib{https://elibrary.ru/item.asp?id=13751322}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 4
\pages 256--266
\crossref{https://doi.org/10.1007/s10688-005-0004-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227247000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-15244346388}
Linking options:
  • https://www.mathnet.ru/eng/faa124
  • https://doi.org/10.4213/faa124
  • https://www.mathnet.ru/eng/faa/v38/i4/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:490
    Full-text PDF :252
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024