Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 3, Pages 70–78
DOI: https://doi.org/10.4213/faa118
(Mi faa118)
 

This article is cited in 14 scientific papers (total in 14 papers)

On the Discrete Spectrum of a Family of Differential Operators

M. Z. Solomyak

Weizmann Institute of Science
References:
Abstract: We consider a family $\mathbf{A}_\alpha$ of differential operators in $L^2(\mathbb{R}^2)$ depending on a parameter $\alpha\ge0$. The operator $\mathbf{A}_\alpha$ formally corresponds to the quadratic form
$$ \mathbf{a}_\alpha[U]=\int_{\mathbb{R}^2}\biggl(|U_x|^2+\frac{1}{2}(|U_y|^2 +y^2|U|^2)\biggr)\,dx\,dy +\alpha\int_\mathbb{R}y|U(0,y)|^2\,dy. $$
The perturbation determined by the second term in this sum is only relatively bounded but not relatively compact with respect to the unperturbed quadratic form $\mathbf{a}_0$.
The spectral properties of $\mathbf{A}_\alpha$ strongly depend on $\alpha$. In particular, $\sigma(\mathbf{A}_0)=[1/2,\infty)$; for $0<\alpha<\sqrt 2$, finitely many eigenvalues $l_n<1/2$ are added to the spectrum; and for $\alpha>\sqrt2$ (where the quadratic form approach does not apply), the spectrum is purely continuous and coincides with $\mathbb{R}$. We study the asymptotic behavior of the number of eigenvalues as $\alpha\nearrow\sqrt 2$ and reduce this problem to the problem on the spectral asymptotics for a certain Jacobi matrix.
Keywords: discrete spectrum, perturbation, Jacobi matrix.
Received: 30.01.2004
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 3, Pages 217–223
DOI: https://doi.org/10.1023/B:FAIA.0000042806.71352.1b
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: Russian
Citation: M. Z. Solomyak, “On the Discrete Spectrum of a Family of Differential Operators”, Funktsional. Anal. i Prilozhen., 38:3 (2004), 70–78; Funct. Anal. Appl., 38:3 (2004), 217–223
Citation in format AMSBIB
\Bibitem{Sol04}
\by M.~Z.~Solomyak
\paper On the Discrete Spectrum of a Family of Differential Operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 3
\pages 70--78
\mathnet{http://mi.mathnet.ru/faa118}
\crossref{https://doi.org/10.4213/faa118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2095135}
\zmath{https://zbmath.org/?q=an:1084.47038}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 3
\pages 217--223
\crossref{https://doi.org/10.1023/B:FAIA.0000042806.71352.1b}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224913700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4644343145}
Linking options:
  • https://www.mathnet.ru/eng/faa118
  • https://doi.org/10.4213/faa118
  • https://www.mathnet.ru/eng/faa/v38/i3/p70
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:563
    Full-text PDF :277
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024