Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 2, Pages 38–54
DOI: https://doi.org/10.4213/faa106
(Mi faa106)
 

This article is cited in 4 scientific papers (total in 4 papers)

Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations

S. V. Oblezinab

a Moscow Institute of Physics and Technology
b Independent University of Moscow
Full-text PDF (261 kB) Citations (4)
References:
Abstract: We compute the discrete affine group of Schlesinger transformations for isomonodromic deformations of a Fuchsian system of second-order differential equations. These transformations are treated as isomorphisms between the moduli spaces of logarithmic $sl(2)$-connections with given eigenvalues of the residues on $\mathbb{P}^1$. The discrete structure is computed with the use of the modification technique for bundles with connections. The result generalizes the well-known classical computations of symmetries of the hypergeometric equation, the Heun equation, and the sixth Painlevé equation.
Keywords: Schlesinger transformations, the Frobenius–Hecke sheaves, Fuchsian systems, the hypergeometric equation, the Heun equation.
Received: 28.11.2002
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 2, Pages 111–124
DOI: https://doi.org/10.1023/B:FAIA.0000034041.67089.07
Bibliographic databases:
Document Type: Article
UDC: 512.72+515.179
Language: Russian
Citation: S. V. Oblezin, “Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations”, Funktsional. Anal. i Prilozhen., 38:2 (2004), 38–54; Funct. Anal. Appl., 38:2 (2004), 111–124
Citation in format AMSBIB
\Bibitem{Obl04}
\by S.~V.~Oblezin
\paper Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 2
\pages 38--54
\mathnet{http://mi.mathnet.ru/faa106}
\crossref{https://doi.org/10.4213/faa106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2086626}
\zmath{https://zbmath.org/?q=an:1084.32010}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 2
\pages 111--124
\crossref{https://doi.org/10.1023/B:FAIA.0000034041.67089.07}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224148100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3142725775}
Linking options:
  • https://www.mathnet.ru/eng/faa106
  • https://doi.org/10.4213/faa106
  • https://www.mathnet.ru/eng/faa/v38/i2/p38
  • This publication is cited in the following 4 articles:
    1. M. Bertola, J. Harnad, J. Hurtubise, “Hamiltonian structure of rational isomonodromic deformation systems”, Journal of Mathematical Physics, 64:8 (2023)  crossref
    2. Chiang Y.-M., Ching A., Tsang Ch.-Y., “Resolving Singularities and Monodromy Reduction of Fuchsian Connections”, Ann. Henri Poincare, 22:9 (2021), 3051–3094  crossref  mathscinet  isi
    3. Maier, RS, “The 192 solutions of the Heun equation”, Mathematics of Computation, 76:258 (2007), 811  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. S. V. Oblezin, “Isomonodromic deformations of $\mathfrak{sl}(2)$ Fuchsian systems on the Riemann sphere”, Mosc. Math. J., 5:2 (2005), 415–441  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:634
    Full-text PDF :256
    References:94
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025