Abstract:
We compute the discrete affine group of Schlesinger transformations for isomonodromic deformations of a Fuchsian system of second-order differential equations. These transformations are treated as isomorphisms between the moduli spaces of logarithmic $sl(2)$-connections with given eigenvalues of the residues on $\mathbb{P}^1$. The discrete structure is computed with the use of the modification technique for bundles with connections. The result generalizes the well-known classical computations of symmetries of the hypergeometric equation, the Heun equation, and the sixth Painlevé equation.
Keywords:
Schlesinger transformations, the Frobenius–Hecke sheaves, Fuchsian systems, the hypergeometric equation, the Heun equation.
Citation:
S. V. Oblezin, “Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations”, Funktsional. Anal. i Prilozhen., 38:2 (2004), 38–54; Funct. Anal. Appl., 38:2 (2004), 111–124
\Bibitem{Obl04}
\by S.~V.~Oblezin
\paper Discrete Symmetries of Systems of Isomonodromic Deformations of Second-Order Fuchsian Differential Equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 2
\pages 38--54
\mathnet{http://mi.mathnet.ru/faa106}
\crossref{https://doi.org/10.4213/faa106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2086626}
\zmath{https://zbmath.org/?q=an:1084.32010}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 2
\pages 111--124
\crossref{https://doi.org/10.1023/B:FAIA.0000034041.67089.07}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224148100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3142725775}
Linking options:
https://www.mathnet.ru/eng/faa106
https://doi.org/10.4213/faa106
https://www.mathnet.ru/eng/faa/v38/i2/p38
This publication is cited in the following 4 articles:
M. Bertola, J. Harnad, J. Hurtubise, “Hamiltonian structure of rational isomonodromic deformation systems”, Journal of Mathematical Physics, 64:8 (2023)
Chiang Y.-M., Ching A., Tsang Ch.-Y., “Resolving Singularities and Monodromy Reduction of Fuchsian Connections”, Ann. Henri Poincare, 22:9 (2021), 3051–3094
Maier, RS, “The 192 solutions of the Heun equation”, Mathematics of Computation, 76:258 (2007), 811
S. V. Oblezin, “Isomonodromic deformations of $\mathfrak{sl}(2)$ Fuchsian systems on the Riemann sphere”, Mosc. Math. J., 5:2 (2005), 415–441