Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 2, Pages 12–27
DOI: https://doi.org/10.4213/faa104
(Mi faa104)
 

This article is cited in 26 scientific papers (total in 26 papers)

Heat Equations in a Nonholonomic Frame

V. M. Buchstabera, D. V. Leikinb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Magnetism, National Academy of Sciences of Ukraine
References:
Abstract: A system of heat equations in a nonholonomic frame is considered. Solutions of the system are constructed in the form of general sigma functions of Abelian tori. As a corollary, we solve the problem (of general interest) to describe the generators of the ring of differential operators annihilating the sigma functions of families of plane algebraic curves.
Keywords: nonholonomic frame, heat equations, sigma and theta functions in several variables, discriminant varieties.
Received: 09.02.2004
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 2, Pages 88–101
DOI: https://doi.org/10.1023/B:FAIA.0000034039.92913.8a
Bibliographic databases:
Document Type: Article
UDC: 517.958+515.178.2
Language: Russian
Citation: V. M. Buchstaber, D. V. Leikin, “Heat Equations in a Nonholonomic Frame”, Funktsional. Anal. i Prilozhen., 38:2 (2004), 12–27; Funct. Anal. Appl., 38:2 (2004), 88–101
Citation in format AMSBIB
\Bibitem{BucLei04}
\by V.~M.~Buchstaber, D.~V.~Leikin
\paper Heat Equations in a Nonholonomic Frame
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 2
\pages 12--27
\mathnet{http://mi.mathnet.ru/faa104}
\crossref{https://doi.org/10.4213/faa104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2086624}
\zmath{https://zbmath.org/?q=an:1069.47019}
\elib{https://elibrary.ru/item.asp?id=13446463}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 2
\pages 88--101
\crossref{https://doi.org/10.1023/B:FAIA.0000034039.92913.8a}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224148100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3142681793}
Linking options:
  • https://www.mathnet.ru/eng/faa104
  • https://doi.org/10.4213/faa104
  • https://www.mathnet.ru/eng/faa/v38/i2/p12
  • This publication is cited in the following 26 articles:
    1. Julia Bernatska, “Abelian Function Fields on Jacobian Varieties”, Axioms, 14:2 (2025), 90  crossref
    2. J. Chris Eilbeck, John Gibbons, Yoshihiro Ônishi, Seidai Yasuda, “Theory of heat equations for sigma functions”, Glasgow Math. J., 2025, 1  crossref
    3. Shigeki Matsutani, “Statistical mechanics of elastica for the shape of supercoiled DNA: Hyperelliptic elastica of genus three”, Physica A: Statistical Mechanics and its Applications, 643 (2024), 129799  crossref
    4. V. M. Buchstaber, E. Yu. Bunkova, “Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods”, Proc. Steklov Inst. Math., 325 (2024), 60–73  mathnet  crossref  crossref  zmath  isi
    5. V. M. Buchstaber, “The Mumford dynamical system and hyperelliptic Kleinian functions”, Funct. Anal. Appl., 57:4 (2023), 288–302  mathnet  crossref  crossref  mathscinet  isi
    6. E. Yu. Bunkova, V. M. Buchstaber, “Explicit Formulas for Differentiation of Hyperelliptic Functions”, Math. Notes, 114:6 (2023), 1151–1162  mathnet  crossref  crossref  mathscinet
    7. Julia Bernatska, Dmitry Leykin, “Solution of the Jacobi inversion problem on non-hyperelliptic curves”, Lett Math Phys, 113:5 (2023)  crossref
    8. Takanori Ayano, Victor M. Buchstaber, “Relationships Between Hyperelliptic Functions of Genus 2 and Elliptic Functions”, SIGMA, 18 (2022), 010, 30 pp.  mathnet  crossref  mathscinet
    9. V. M. Buchstaber, E. Yu. Bunkova, “Hyperelliptic Sigma Functions and Adler–Moser Polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197  mathnet  crossref  crossref  isi
    10. A. V. Domrin, “Uniqueness theorem for the two-dimensional sigma function”, Funct. Anal. Appl., 54:1 (2020), 21–30  mathnet  crossref  crossref  mathscinet  isi  elib
    11. V. M. Buchstaber, E. Yu. Bunkova, “Lie Algebras of Heat Operators in a Nonholonomic Frame”, Math. Notes, 108:1 (2020), 15–28  mathnet  crossref  crossref  mathscinet  isi  elib
    12. V. M. Buchstaber, E. Yu. Bunkova, “Sigma Functions and Lie Algebras of Schrödinger Operators”, Funct. Anal. Appl., 54:4 (2020), 229–240  mathnet  crossref  crossref  mathscinet  isi  elib
    13. Julia Bernatska, Yaacov Kopeliovich, “Addition of Divisors on Hyperelliptic Curves via Interpolation Polynomials”, SIGMA, 16 (2020), 053, 21 pp.  mathnet  crossref
    14. T. Ayano, V. M. Buchstaber, “Analytical and number-theoretical properties of the two-dimensional sigma function”, Chebyshevskii sb., 21:1 (2020), 9–50  mathnet  crossref  mathscinet
    15. Buchstaber V.M. Enolski V.Z. Leykin D.V., “SIGMA-Functions: Old and New Results”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, ed. Donagi R. Shaska T., Cambridge Univ Press, 2020, 175–214  mathscinet  isi
    16. Bernatska J. Leykin D., “On Degenerate SIGMA-Functions in Genus 2”, Glasg. Math. J., 61:1 (2019), 169–193  crossref  mathscinet  zmath  isi
    17. Julia Bernatska, Dmitry Leykin, “On Regularization of Second Kind Integrals”, SIGMA, 14 (2018), 074, 28 pp.  mathnet  crossref
    18. Onishi Y., “Arithmetical Power Series Expansion of the SIGMA Function For a Plane Curve”, Proc. Edinb. Math. Soc., 61:4 (2018), 995–1022  crossref  mathscinet  isi  scopus
    19. V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    20. E. Yu. Netay, “Geometric differential equations on bundles of Jacobians of curves of genus 1 and 2”, Trans. Moscow Math. Soc., 74 (2013), 281–292  mathnet  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:891
    Full-text PDF :344
    References:74
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025