This article is cited in 24 scientific papers (total in 24 papers)
Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups
Citation:
G. I. Olshanskii, “Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups”, Funktsional. Anal. i Prilozhen., 12:3 (1978), 32–44; Funct. Anal. Appl., 12:3 (1978), 185–195
\Bibitem{Ols78}
\by G.~I.~Olshanskii
\paper Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups
\jour Funktsional. Anal. i Prilozhen.
\yr 1978
\vol 12
\issue 3
\pages 32--44
\mathnet{http://mi.mathnet.ru/faa2003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=509382}
\zmath{https://zbmath.org/?q=an:0392.22012|0411.22017}
\transl
\jour Funct. Anal. Appl.
\yr 1978
\vol 12
\issue 3
\pages 185--195
\crossref{https://doi.org/10.1007/BF01681430}
Linking options:
https://www.mathnet.ru/eng/faa2003
https://www.mathnet.ru/eng/faa/v12/i3/p32
This publication is cited in the following 24 articles:
Karl-Hermann Neeb, Francesco G. Russo, “Covariant projective representations of Hilbert–Lie groups”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2024
G. I. Olshanski, “Characters of classical groups, Schur-type functions and discrete splines”, Sb. Math., 214:11 (2023), 1585–1626
Matthew Dawson, Gestur Ólafsson, “Conical representations for direct limits of symmetric spaces”, Math. Z., 286:3-4 (2017), 1375
Alexander I. Bufetov, Yanqi Qiu, “Ergodic measures on spaces of infinite matrices over non-Archimedean locally compact fields”, Compositio Math., 153:12 (2017), 2482–2533
Yu. A. Neretin, “Wishart–Pickrell distributions and closures of group actions”, J. Math. Sci. (N. Y.), 224:2 (2017), 328–334
Takumi ENOMOTO, Masaki IZUMI, “Indecomposable characters of infinite dimensional groups associated with operator algebras”, J. Math. Soc. Japan, 68:3 (2016)
Daniel Beltiţă, Karl-Hermann Neeb, “Nonlinear Completely Positive Maps and Dilation Theory for Real Involutive Algebras”, Integr. Equ. Oper. Theory, 83:4 (2015), 517
Daniel Beltiţă, Karl‐Hermann Neeb, “Schur–Weyl Theory for C*‐algebras”, Mathematische Nachrichten, 285:10 (2012), 1170
Kerov, S, “Harmonic analysis on the infinite symmetric group”, Inventiones Mathematicae, 158:3 (2004), 551
Karl-Hermann Neeb, Lie Theory, 2004, 213
Borodin, A, “Infinite random matrices and ergodic measures”, Communications in Mathematical Physics, 223:1 (2001), 87
A.I Molev, G.I Olshanski, “Degenerate Affine Hecke Algebras and Centralizer Construction for the Symmetric Groups”, Journal of Algebra, 237:1 (2001), 302
Yu. A. Neretin, “Categories of bistochastic measures, and representations of some infinite-dimensional groups”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 197–219
Yu. A. Neretin, “A semigroup of operators in the boson fock space”, Funct. Anal. Appl., 24:2 (1990), 135–144
G. I. Olshanskii, “Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups”, Funct. Anal. Appl., 22:4 (1988), 273–285
N. I. Nessonov, “A complete classification of the representations of $\mathrm{GL}(\infty)$ containing the identity representation of the unitary subgroup”, Math. USSR-Sb., 58:1 (1987), 127–147
G. I. Olshanskii, “Unitary representations of the group $SO_0(\infty,\infty)$ as limits of unitary representations of the groups $SO_0(n,\infty)$ as $n\to\infty$”, Funct. Anal. Appl., 20:4 (1986), 292–301
G. I. Olshanskii, “Infinite-dimensional classical groups of finite $r$-rank: Description of representations and asymptotic theory”, Funct. Anal. Appl., 18:1 (1984), 22–34
A.L Carey, “Projective repesentations of the Hilbert Lie group U (H)2 via quasifree statres on the CAR algebra”, Journal of Functional Analysis, 55:3 (1984), 277