Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1978, Volume 12, Issue 3, Pages 32–44 (Mi faa2003)  

This article is cited in 24 scientific papers (total in 24 papers)

Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups

G. I. Olshanskii
References:
Received: 20.10.1977
English version:
Functional Analysis and Its Applications, 1978, Volume 12, Issue 3, Pages 185–195
DOI: https://doi.org/10.1007/BF01681430
Bibliographic databases:
Document Type: Article
UDC: 519.46
Language: Russian
Citation: G. I. Olshanskii, “Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups”, Funktsional. Anal. i Prilozhen., 12:3 (1978), 32–44; Funct. Anal. Appl., 12:3 (1978), 185–195
Citation in format AMSBIB
\Bibitem{Ols78}
\by G.~I.~Olshanskii
\paper Unitary representations of the infinite-dimensional classical groups $U(p,\infty)$, $SO_0(p,\infty)$, $Sp(p,\infty)$ and the corresponding motion groups
\jour Funktsional. Anal. i Prilozhen.
\yr 1978
\vol 12
\issue 3
\pages 32--44
\mathnet{http://mi.mathnet.ru/faa2003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=509382}
\zmath{https://zbmath.org/?q=an:0392.22012|0411.22017}
\transl
\jour Funct. Anal. Appl.
\yr 1978
\vol 12
\issue 3
\pages 185--195
\crossref{https://doi.org/10.1007/BF01681430}
Linking options:
  • https://www.mathnet.ru/eng/faa2003
  • https://www.mathnet.ru/eng/faa/v12/i3/p32
  • This publication is cited in the following 24 articles:
    1. Karl-Hermann Neeb, Francesco G. Russo, “Covariant projective representations of Hilbert–Lie groups”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2024  crossref
    2. G. I. Olshanski, “Characters of classical groups, Schur-type functions and discrete splines”, Sb. Math., 214:11 (2023), 1585–1626  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Matthew Dawson, Gestur Ólafsson, “Conical representations for direct limits of symmetric spaces”, Math. Z., 286:3-4 (2017), 1375  crossref
    4. Alexander I. Bufetov, Yanqi Qiu, “Ergodic measures on spaces of infinite matrices over non-Archimedean locally compact fields”, Compositio Math., 153:12 (2017), 2482–2533  mathnet  crossref  isi  scopus
    5. Yu. A. Neretin, “Wishart–Pickrell distributions and closures of group actions”, J. Math. Sci. (N. Y.), 224:2 (2017), 328–334  mathnet  crossref  mathscinet
    6. Takumi ENOMOTO, Masaki IZUMI, “Indecomposable characters of infinite dimensional groups associated with operator algebras”, J. Math. Soc. Japan, 68:3 (2016)  crossref
    7. Daniel Beltiţă, Karl-Hermann Neeb, “Nonlinear Completely Positive Maps and Dilation Theory for Real Involutive Algebras”, Integr. Equ. Oper. Theory, 83:4 (2015), 517  crossref
    8. Daniel Beltiţă, Karl‐Hermann Neeb, “Schur–Weyl Theory for C*‐algebras”, Mathematische Nachrichten, 285:10 (2012), 1170  crossref
    9. Kerov, S, “Harmonic analysis on the infinite symmetric group”, Inventiones Mathematicae, 158:3 (2004), 551  crossref  isi
    10. Karl-Hermann Neeb, Lie Theory, 2004, 213  crossref
    11. Borodin, A, “Infinite random matrices and ergodic measures”, Communications in Mathematical Physics, 223:1 (2001), 87  crossref  isi
    12. A.I Molev, G.I Olshanski, “Degenerate Affine Hecke Algebras and Centralizer Construction for the Symmetric Groups”, Journal of Algebra, 237:1 (2001), 302  crossref
    13. Yu. A. Neretin, “Categories of bistochastic measures, and representations of some infinite-dimensional groups”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 197–219  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    14. Yu. A. Neretin, “A semigroup of operators in the boson fock space”, Funct. Anal. Appl., 24:2 (1990), 135–144  mathnet  crossref  mathscinet  zmath  isi
    15. G. I. Olshanskii, “Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups”, Funct. Anal. Appl., 22:4 (1988), 273–285  mathnet  crossref  mathscinet  zmath  isi
    16. Michihiko Hashizume, Representations of Lie Groups, Kyoto, Hiroshima, 1986, 1988, 395  crossref
    17. N. I. Nessonov, “A complete classification of the representations of $\mathrm{GL}(\infty)$ containing the identity representation of the unitary subgroup”, Math. USSR-Sb., 58:1 (1987), 127–147  mathnet  crossref  mathscinet  zmath  isi
    18. G. I. Olshanskii, “Unitary representations of the group $SO_0(\infty,\infty)$ as limits of unitary representations of the groups $SO_0(n,\infty)$ as $n\to\infty$”, Funct. Anal. Appl., 20:4 (1986), 292–301  mathnet  crossref  mathscinet  zmath  isi
    19. G. I. Olshanskii, “Infinite-dimensional classical groups of finite $r$-rank: Description of representations and asymptotic theory”, Funct. Anal. Appl., 18:1 (1984), 22–34  mathnet  crossref  mathscinet  zmath  isi
    20. A.L Carey, “Projective repesentations of the Hilbert Lie group U (H)2 via quasifree statres on the CAR algebra”, Journal of Functional Analysis, 55:3 (1984), 277  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:776
    Full-text PDF :236
    References:93
    First page:5
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025