Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2012, Volume 3, Number 1, Pages 41–62 (Mi emj73)  

This article is cited in 3 scientific papers (total in 3 papers)

On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations

H. G. Ghazaryan

Department of mathematics and mathematical modelling, Russian-Armenian (Slavonic) State University, 123 Ovsep Emin St., 0051 Yerevan, Armenia
Full-text PDF (408 kB) Citations (3)
References:
Abstract: In this paper the existence of a constant $\kappa_0>0$ is proved such that all solutions of a class of regular partially hypoelliptic (with respect to the hyperplane $x''=(x_2,\dots,x_n)=0$ of the space $E^n$) equations $P(D)u=0$ in the strip $\Omega_\kappa=\{(x_1,x'')=(x_1,x_2,\dots,x_n)\in E^n;\, |x_1|<\kappa\}$ are infinitely differentiable when $\kappa\ge\kappa_0$ and $D^\alpha u\in L_2(\Omega_\kappa)$ for all multi-indices $\alpha=(0,\alpha'')=(0,\alpha_2,\dots,\alpha_n)$ in the Newton polyhedron of the operator $P(D)\cdot{}$.
Keywords and phrases: regular (non-degenerate) operator (equation), partially hypoelliptic operator (equation), multi-anisotropic Sobolev spaces.
Received: 15.10.2011
Bibliographic databases:
Document Type: Article
MSC: 12E10
Language: English
Citation: H. G. Ghazaryan, “On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations”, Eurasian Math. J., 3:1 (2012), 41–62
Citation in format AMSBIB
\Bibitem{Gha12}
\by H.~G.~Ghazaryan
\paper On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations
\jour Eurasian Math. J.
\yr 2012
\vol 3
\issue 1
\pages 41--62
\mathnet{http://mi.mathnet.ru/emj73}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024108}
\zmath{https://zbmath.org/?q=an:06181788}
Linking options:
  • https://www.mathnet.ru/eng/emj73
  • https://www.mathnet.ru/eng/emj/v3/i1/p41
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025