Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2023, Volume 14, Number 2, Pages 79–93
DOI: https://doi.org/10.32523/2077-9879-2023-14-2-79-93
(Mi emj471)
 

$n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators

A. Nasli Bakira, S. Mecherib

a Department of Mathematics, Hassiba Benbouali University of Chlef, B.P. 78C, Ouled Fares, 02180 Chlef, Algeria
b Department of Mathematics, Faculty of Science and Informatics, El Bachir Ibrahimi University, Bordj Bou Arreridj, Algeria
References:
Abstract: In the present article, we introduce a new class of operators which will be called the class of $(M, k)$-quasi-$*$-class $Q$ operators. An operator $A\in B(H)$ is said to be $(M, k)$-quasi-$*$-class $Q$ for certain integer $k$, if there exists $M>0$ such that
$$ A^{*k}(MA^{*2}A^2-2AA^*+I)A^k\geqslant0. $$
Some properties of this class of operators are shown. It is proved that the considered class contains the class of $k$-quasi-$*$-class $\mathbb{A}$ operators. The decomposition of such operators, their restrictions on invariant subspaces, the $n$-multicyclicity and some spectral properties are also presented. We also show that if $\lambda\in\mathbb{C}$, $\lambda\ne0$ is an isolated point of the spectrum of $A$, then the Riesz idempotent $E$ for $\lambda$ is self-adjoint, and verifies $EH=ker(A-\lambda)=ker(A-\lambda)^*$.
Keywords and phrases: hyponormal operators, $(M, k)$-quasi-$*$-class $Q$ operators, $k$-quasi-$*$-class $\mathbb{A}$ operators.
Received: 17.06.2021
Document Type: Article
MSC: 47A30, 47B47, 47B20
Language: English
Citation: A. Nasli Bakir, S. Mecheri, “$n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators”, Eurasian Math. J., 14:2 (2023), 79–93
Citation in format AMSBIB
\Bibitem{NasMec23}
\by A.~Nasli Bakir, S.~Mecheri
\paper $n$-Multiplicity and spectral properties for $(M, k)$-quasi-$*$-class $Q$ operators
\jour Eurasian Math. J.
\yr 2023
\vol 14
\issue 2
\pages 79--93
\mathnet{http://mi.mathnet.ru/emj471}
\crossref{https://doi.org/10.32523/2077-9879-2023-14-2-79-93}
Linking options:
  • https://www.mathnet.ru/eng/emj471
  • https://www.mathnet.ru/eng/emj/v14/i2/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :36
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024