Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2023, Volume 14, Number 2, Pages 24–57
DOI: https://doi.org/10.32523/2077-9879-2023-14-2-24-57
(Mi emj468)
 

Caffarelli–Kohn–Nirenberg inequalities for Besov and Triebel–Lizorkin-type spaces

D. Drihem

Department of Mathematics, Laboratory of Functional Analysis and Geometry of Spaces, M'sila University, M'sila, 28000, M’sila, Algeria
References:
Abstract: We present some Caffarelli–Kohn–Nirenberg-type inequalities for Herz-type Besov–Triebel–Lizorkin spaces, Besov–Morrey and Triebel–Lizorkin–Morrey spaces. More precisely, we investigate the inequalities
$$ ||f||_{\dot{k}_{v,\sigma}^{\alpha_1,r}}\leqslant c||f||_{\dot{K}_{u}^{\alpha_2,\delta}}^{1-\theta}||f||_{\dot{K}_{p}^{\alpha_3,\delta_1}A_\beta^s}^\theta $$
and
$$ ||f||_{\mathcal{E}_{p,2,u}^\sigma}\leqslant c||f||_{M_\mu^\delta}^{1-\theta}||f||_{\mathcal{N}_{q,\beta,v}}^\theta, $$
with some appropriate assumptions on the parameters, where $\dot{k}_{v,\sigma}^{\alpha_1,r}$ are the Herz-type Bessel potential spaces, which are just the Sobolev spaces if $\alpha_1=0,1<r=v<\infty$ and $\sigma\in\mathbb{N}_0$, and $\dot{K}_p^{\alpha_3,\delta_1}A_\beta^s$ are Besov or Triebel–Lizorkin spaces if $\alpha_3=0$ and $\delta-1=p$. The usual Littlewood–Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sobolev inequalities are given.
Keywords and phrases: Besov spaces, Triebel–Lizorkin spaces, Morrey spaces, Herz spaces, Caffarelli–Kohn–Nirenberg inequalities.
Funding agency Grant number
General Direction of Higher Education and Training C00L03UN280120220004
General Directorate of Scientific Research and Technological Development
This work is funded by the General Direction of Higher Education and Training under Grant No. C00L03UN280120220004 and by the General Directorate of Scientific Research and Technological Development, Algeria.
Received: 09.05.2020
Revised: 19.10.2022
Document Type: Article
MSC: 46B70, 46E35
Language: English
Citation: D. Drihem, “Caffarelli–Kohn–Nirenberg inequalities for Besov and Triebel–Lizorkin-type spaces”, Eurasian Math. J., 14:2 (2023), 24–57
Citation in format AMSBIB
\Bibitem{Dri23}
\by D.~Drihem
\paper Caffarelli--Kohn--Nirenberg inequalities for Besov and Triebel--Lizorkin-type spaces
\jour Eurasian Math. J.
\yr 2023
\vol 14
\issue 2
\pages 24--57
\mathnet{http://mi.mathnet.ru/emj468}
\crossref{https://doi.org/10.32523/2077-9879-2023-14-2-24-57}
Linking options:
  • https://www.mathnet.ru/eng/emj468
  • https://www.mathnet.ru/eng/emj/v14/i2/p24
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :37
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024