|
Caffarelli–Kohn–Nirenberg inequalities for Besov and Triebel–Lizorkin-type spaces
D. Drihem Department of Mathematics,
Laboratory of Functional Analysis and Geometry of Spaces,
M'sila University,
M'sila, 28000, M’sila, Algeria
Abstract:
We present some Caffarelli–Kohn–Nirenberg-type inequalities for Herz-type Besov–Triebel–Lizorkin spaces, Besov–Morrey and Triebel–Lizorkin–Morrey spaces. More precisely, we investigate
the inequalities
$$
||f||_{\dot{k}_{v,\sigma}^{\alpha_1,r}}\leqslant c||f||_{\dot{K}_{u}^{\alpha_2,\delta}}^{1-\theta}||f||_{\dot{K}_{p}^{\alpha_3,\delta_1}A_\beta^s}^\theta
$$
and
$$
||f||_{\mathcal{E}_{p,2,u}^\sigma}\leqslant c||f||_{M_\mu^\delta}^{1-\theta}||f||_{\mathcal{N}_{q,\beta,v}}^\theta,
$$
with some appropriate assumptions on the parameters, where $\dot{k}_{v,\sigma}^{\alpha_1,r}$ are the Herz-type Bessel potential
spaces, which are just the Sobolev spaces if $\alpha_1=0,1<r=v<\infty$ and $\sigma\in\mathbb{N}_0$, and $\dot{K}_p^{\alpha_3,\delta_1}A_\beta^s$
are Besov or Triebel–Lizorkin spaces if $\alpha_3=0$ and $\delta-1=p$. The usual Littlewood–Paley technique,
Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sobolev
inequalities are given.
Keywords and phrases:
Besov spaces, Triebel–Lizorkin spaces, Morrey spaces, Herz spaces, Caffarelli–Kohn–Nirenberg inequalities.
Received: 09.05.2020 Revised: 19.10.2022
Citation:
D. Drihem, “Caffarelli–Kohn–Nirenberg inequalities for Besov and Triebel–Lizorkin-type spaces”, Eurasian Math. J., 14:2 (2023), 24–57
Linking options:
https://www.mathnet.ru/eng/emj468 https://www.mathnet.ru/eng/emj/v14/i2/p24
|
Statistics & downloads: |
Abstract page: | 70 | Full-text PDF : | 37 | References: | 17 |
|