Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2022, Volume 13, Number 2, Pages 37–42
DOI: https://doi.org/10.32523/2077-9879-2022-13-2-37-42
(Mi emj436)
 

This article is cited in 2 scientific papers (total in 2 papers)

Completeness of the exponential system on a segment of the real axis

A. M. Gaisina, B. E. Kanguzhinbc, A. A. Seitovabc

a Institute of Mathematics with Computing Centre, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Bashkir State University, 112 Chernyshevsky St, 450008 Ufa, Russia
b Institute of Mathematics and Mathematical Modeling, 125 Pushkin St, 050010 Almaty, Kazakhstan
c Al-Farabi Kazakh National University, 71 al-Farabi Ave, 050040 Almaty, Kazakhstan
Full-text PDF (394 kB) Citations (2)
References:
Abstract: Let $\Lambda=\{\lambda_n\}$ be the sequence of all zeros of the entire function $\Delta(\lambda)=1-i\lambda\int_0^1f(t)e^{i\lambda t}dt$ of exponential type. We consider exponential system of functions $e(\Lambda)=\{t^{p-1}e^{i\lambda_nt}, 1\leqslant p\leqslant m_n\}$, where $m_n$ — is the multiplicity of the zero $\lambda_n$. The question is: for which $a$$b$ ($a<b$) is the system $e(\Lambda)$ complete (incomplete) in the space $L^2(a, b)$? Let $D$ be the length of the indicator conjugate diagram of the entire function $\Delta(\lambda)$. Then the following statements are valid:
  • when $b-a>D$ the system $e(\Lambda)$ is incomplete in $L^2(a,b)$;
  • when $b-a<D$ the system $e(\Lambda)$ is complete in $L^2(a,b)$;
  • if we remove from $\Lambda$ any two points $\lambda$ and $\mu$, then the system $e(\Omega)$, $\Omega=\Lambda\setminus\{\lambda,\mu\}$ is incomplete in $L^2(a,b)$ also when $b-a=D$.
Keywords and phrases: Lebesgue-Stieltjes integral, indicatrix of the growth, Borel adjoint diagram, Beurling-Malliavin multiplier theorem, Paley-Wiener theorem, Cartwright class.
Funding agency Grant number
Russian Science Foundation 21-11-00168
Ministry of Education and Science of the Republic of Kazakhstan AP08855402
This work supported by the Russian Foundation grant No. 21-11-00168. The work was partially supported by the grant No. AP08855402 of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan.
Received: 21.02.2021
Bibliographic databases:
Document Type: Article
MSC: 30D15, 30D20, 46E30
Language: English
Citation: A. M. Gaisin, B. E. Kanguzhin, A. A. Seitova, “Completeness of the exponential system on a segment of the real axis”, Eurasian Math. J., 13:2 (2022), 37–42
Citation in format AMSBIB
\Bibitem{GaiKanSei22}
\by A.~M.~Gaisin, B.~E.~Kanguzhin, A.~A.~Seitova
\paper Completeness of the exponential system on a segment of the real axis
\jour Eurasian Math. J.
\yr 2022
\vol 13
\issue 2
\pages 37--42
\mathnet{http://mi.mathnet.ru/emj436}
\crossref{https://doi.org/10.32523/2077-9879-2022-13-2-37-42}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4459173}
Linking options:
  • https://www.mathnet.ru/eng/emj436
  • https://www.mathnet.ru/eng/emj/v13/i2/p37
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :53
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024