Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2022, Volume 13, Number 1, Pages 32–43
DOI: https://doi.org/10.32523/2077-9879-2022-13-1-32-43
(Mi emj430)
 

Zeros of lacunary type polynomials

S. Das

Department of Mathematics, Kurseong College, Dow Hill Road, Kurseong, 734203 West Bengal, India
References:
Abstract: Using Schwarz's lemma, Mohammad (1965) proved that all zeros of the polynomial
$$ f(z)=a_0+a_1z+\dots+a_{n-1}z^{n-1}+a_nz^n $$
with real or complex coefficients lie in the closed disc
$$ |z|\leqslant\frac{M'}{|a_n|}\text{ if } |a_n|\leqslant M', $$
where
$$ M'=\max_{|z|=1}|a_0+a_1z+\dots+a_{n-1}z^{n-1}|. $$
In this paper, we present new results on the location of zeros of the lacunary type polynomial
$$ p(z)=a_0+a_1z+\dots+a_pz^p+a_nz^n,\quad p<n. $$
In particular, for $p = n -1$, our first result implies an important corollary which sharpens the above result. Also, we described some regions in which all zeros of $p(z)$ are simple. In many cases, our results give better bounds for the location of polynomial zeros than the known ones.
Keywords and phrases: zeros, lacunary polynomials, annular region.
Received: 04.08.2020
Revised: 07.06.2021
Bibliographic databases:
Document Type: Article
UDC: 30C15, 30C10, 26C10
Language: English
Citation: S. Das, “Zeros of lacunary type polynomials”, Eurasian Math. J., 13:1 (2022), 32–43
Citation in format AMSBIB
\Bibitem{Das22}
\by S.~Das
\paper Zeros of lacunary type polynomials
\jour Eurasian Math. J.
\yr 2022
\vol 13
\issue 1
\pages 32--43
\mathnet{http://mi.mathnet.ru/emj430}
\crossref{https://doi.org/10.32523/2077-9879-2022-13-1-32-43}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4407203}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129995067}
Linking options:
  • https://www.mathnet.ru/eng/emj430
  • https://www.mathnet.ru/eng/emj/v13/i1/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :66
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024