Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2021, Volume 12, Number 4, Pages 43–52
DOI: https://doi.org/10.32523/2077-9879-2021-12-4-43-52
(Mi emj421)
 

This article is cited in 2 scientific papers (total in 2 papers)

Determination of density of elliptic potential

T. Sh. Kalmenova, A. K. Lesba, U. A. Iskakovaa

a Institute of Mathematics and Mathematical Modeling, 125 Pushkin St, 050010 Almaty, Kazakhstan
b Al-Farabi Kazakh National University, 71 Al-Farabi Av, 050010 Almaty, Kazakhstan
Full-text PDF (377 kB) Citations (2)
References:
Abstract: In this paper, using techniques of finding boundary conditions for the volume (Newton) potential, we obtain the boundary conditions for the volume potential
$$ u(x)=\int_\Omega\varepsilon(x,\xi)\rho(\xi)d\xi, $$
where $\varepsilon(x,\xi)$ is the fundamental solution of the following elliptic equation
$$ L(x,D)\varepsilon(x,\xi)=-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}a_{ij}(x)\frac{\partial}{\partial x_j}\varepsilon(x,\xi)+a(x)\varepsilon(x,\xi)=\delta(x,\xi). $$
Using the explicit boundary conditions for the potential $u(x)$, the density $\rho(x)$ of this potential is uniquely determined. Also, the inverse Sommerfeld problem for the Helmholtz equation is considered.
Keywords and phrases: Helmholtz potential, fundamental solution of Helmholtz equation, potential density, potential boundary condition, inverse problem.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP08856042
This work was supported by the grant of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan, project no. AP08856042.
Received: 08.06.2021
Bibliographic databases:
Document Type: Article
MSC: 47F05, 35P10
Language: English
Citation: T. Sh. Kalmenov, A. K. Les, U. A. Iskakova, “Determination of density of elliptic potential”, Eurasian Math. J., 12:4 (2021), 43–52
Citation in format AMSBIB
\Bibitem{KalLesIsk21}
\by T.~Sh.~Kalmenov, A.~K.~Les, U.~A.~Iskakova
\paper Determination of density of elliptic potential
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 4
\pages 43--52
\mathnet{http://mi.mathnet.ru/emj421}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-4-43-52}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000737952800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123899862}
Linking options:
  • https://www.mathnet.ru/eng/emj421
  • https://www.mathnet.ru/eng/emj/v12/i4/p43
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:143
    Full-text PDF :61
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024