Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2021, Volume 12, Number 3, Pages 90–93
DOI: https://doi.org/10.32523/2077-9879-2021-12-3-90-93
(Mi emj417)
 

This article is cited in 4 scientific papers (total in 4 papers)

Short communications

On the inequality of different metrics for multiple Fourier–Haar series

A. N. Bashirovaa, E. D. Nursultanovb

a Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, 13 Kazhymukan Munaitpasov St, 010008 Nur-Sultan, Kazakhstan
b M.V. Lomonosov Moscow State University, Kazakhstan Branch, 11 Kazhymukan Munaitpasov St, 010010 Nur-Sultan, Kazakhstan
Full-text PDF (391 kB) Citations (4)
References:
Abstract: Let $1<p<q<\infty$, $f\in L_p[0, 1]$. Then, according to the inequality of different metrics due to S.M. Nikol'skii, for the sequence of norms of partial sums of the Fourier–Haar series $\{||S_{2^k}(f)||_{L_q}\}_{k=0}^\infty$ the following relation is true $||S_{2^k}(f)||_{L_q}=O\left(2^{k\left(\frac1p-\frac1q\right)}\right)$. In this paper, we study the asymptotic behavior of partial sums in the Lorentz spaces. In particular, it is obtained that $||S_{2^{k_1}2^{k_2}}(f)||_{L_{\overline{q}}}=o\left(2^{k_1\left(\frac1{p_1}-\frac1{q_1}\right)+k_2\left(\frac1{p_2}-\frac1{q_2}\right)}\right)$ for $f\in L_{\overline{p},\overline{\tau}}[0, 1]^2$.
Keywords and phrases: Fourier series, Haar system, inequality of different metrics, anisotropic Lebesgue and Lorentz spaces.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP08956157
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (Grant AP08956157).
Received: 01.08.2020
Bibliographic databases:
Document Type: Article
MSC: 42B05, 46E30
Language: English
Citation: A. N. Bashirova, E. D. Nursultanov, “On the inequality of different metrics for multiple Fourier–Haar series”, Eurasian Math. J., 12:3 (2021), 90–93
Citation in format AMSBIB
\Bibitem{ShaNur21}
\by A.~N.~Bashirova, E.~D.~Nursultanov
\paper On the inequality of different metrics for multiple Fourier--Haar series
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 3
\pages 90--93
\mathnet{http://mi.mathnet.ru/emj417}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-3-90-93}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000710837300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123895568}
Linking options:
  • https://www.mathnet.ru/eng/emj417
  • https://www.mathnet.ru/eng/emj/v12/i3/p90
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025