Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2021, Volume 12, Number 3, Pages 42–45
DOI: https://doi.org/10.32523/2077-9879-2021-12-3-42-45
(Mi emj413)
 

This article is cited in 1 scientific paper (total in 1 paper)

Maps preserving the coincidence points of operators

R. Hosseinzadeh

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar, Iran
Full-text PDF (298 kB) Citations (1)
References:
Abstract: Let $\mathcal{B(X)}$ be the algebra of all bounded linear operators on a Banach space $\mathcal{X}$ with $\dim \mathcal{X} \geqslant 2$. In this paper, we describe surjective maps $\phi: \mathcal{B(X)}\to\mathcal{B(X)}$ preserving the coincidence points of operators, i.e., $C(A,B)=C(\phi(A),\phi(B))$, for every $A, B \in \mathcal{B(X)}$, where $C(A,B)$ denotes the set of all coincidence points of two operators $A$ and $B$.
Keywords and phrases: preserver problem, coincidence points.
Received: 28.04.2020
Bibliographic databases:
Document Type: Article
MSC: 46J10, 47B48
Language: English
Citation: R. Hosseinzadeh, “Maps preserving the coincidence points of operators”, Eurasian Math. J., 12:3 (2021), 42–45
Citation in format AMSBIB
\Bibitem{Hos21}
\by R.~Hosseinzadeh
\paper Maps preserving the coincidence points of operators
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 3
\pages 42--45
\mathnet{http://mi.mathnet.ru/emj413}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-3-42-45}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000710837300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123882383}
Linking options:
  • https://www.mathnet.ru/eng/emj413
  • https://www.mathnet.ru/eng/emj/v12/i3/p42
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :39
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024