|
This article is cited in 4 scientific papers (total in 4 papers)
Unconditional bases of systems of Bessel functions
B. V. Vynnyts'kyi, R. V. Khats', I. B. Sheparovich Institute of Physics, Mathematics, Economy and Innovation Technologies,
Drohobych Ivan Franko State Pedagogical University,
3 Stryis'ka St., 82100 Drohobych, Ukraine
Abstract:
We find a criterion of unconditional basicity of the system $(\sqrt{x\rho_k}J_\nu(x\rho_k): k\in\mathbb{N})$ in the space $L^2(0; 1)$ where $J_\nu$ is the Bessel function of the first kind of index $\nu\geqslant-1/2$ and $(\rho_k: k\in\mathbb{N})$ is a sequence of distinct nonzero complex numbers.
Keywords and phrases:
interpolation problem, complete interpolating sequence, unconditional basis, Bessel
function, entire function of exponential type.
Received: 27.03.2019
Citation:
B. V. Vynnyts'kyi, R. V. Khats', I. B. Sheparovich, “Unconditional bases of systems of Bessel functions”, Eurasian Math. J., 11:4 (2020), 76–86
Linking options:
https://www.mathnet.ru/eng/emj384 https://www.mathnet.ru/eng/emj/v11/i4/p76
|
|