Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2010, Volume 1, Number 4, Pages 116–123 (Mi emj38)  

Justification of the dynamical systems method for global homeomorphism

A. G. Ramm

Department of Mathematics, Kansas State University, Manhattan, KS, USA
References:
Abstract: The dynamical systems method (DSM) is justified for solving operator equations $F(u)=f$, where $F$ is a nonlinear operator in a Hilbert space $H$. It is assumed that $F$ is a global homeomorphism of $H$ onto $H$, that $F\in C^1_{loc}$, that is, it has the Fréchet derivative $F'(u)$ continuous with respect to $u$, that the operator $[F'(u)]^{-1}$ exists for all $u\in H$ and is bounded, $||[F'(u)]^{-1}||\leq m(u)$, where $m(u)>0$ depends on $u$, and is not necessarily uniformly bounded with respect to $u$. It is proved under these assumptions that the continuous analogue of the Newton's method
\begin{equation} \dot u=-[F'(u)]^{-1}(F(u)-f),\qquad u(0)=u_0, \tag{1} \end{equation}
converges strongly to the solution of the equation $F(u)=f$ for any $f\in H$ and any $u_0\in H$. The global (and even local) existence of the solution to the Cauchy problem $(1)$ was not established earlier without assuming that $F'(u)$ is Lipschitz-continuous. The case when $F$ is not a global homeomorphism but a monotone operator in $H$ is also considered.
Keywords and phrases: the dynamical systems method (DSM), surjectivity, global homeomorphisms, monotone operators.
Received: 19.07.2010
Bibliographic databases:
Document Type: Article
MSC: 47J35
Language: English
Citation: A. G. Ramm, “Justification of the dynamical systems method for global homeomorphism”, Eurasian Math. J., 1:4 (2010), 116–123
Citation in format AMSBIB
\Bibitem{Ram10}
\by A.~G.~Ramm
\paper Justification of the dynamical systems method for global homeomorphism
\jour Eurasian Math. J.
\yr 2010
\vol 1
\issue 4
\pages 116--123
\mathnet{http://mi.mathnet.ru/emj38}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2905204}
\zmath{https://zbmath.org/?q=an:05978053}
Linking options:
  • https://www.mathnet.ru/eng/emj38
  • https://www.mathnet.ru/eng/emj/v1/i4/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :70
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024