Abstract:
We describe Rudin–Keisler preorders and distribution functions of numbers of limit
models for quite o-minimal Ehrenfeucht theories. Decomposition formulas for these distributions are
found.
Keywords and phrases:
quite o-minimal theory, Ehrenfeucht theory, distribution of countable models, decomposition formula.
This research has been funded by the Science Committee of the Ministry of Education and
Science of the Republic of Kazakhstan (grant no. AP08855544), and by the program of fundamental
scientific researches of the Siberian Branch of the Russian Academy of Sciences no. I.1.1 (project
no. 0314-2019-0002).
Citation:
B. Sh. Kulpeshov, S. V. Sudoplatov, “Distributions of countable models of quite o-minimal Ehrenfeucht theories”, Eurasian Math. J., 11:3 (2020), 66–78
\Bibitem{KulSud20}
\by B.~Sh.~Kulpeshov, S.~V.~Sudoplatov
\paper Distributions of countable models of quite $o$-minimal Ehrenfeucht theories
\jour Eurasian Math. J.
\yr 2020
\vol 11
\issue 3
\pages 66--78
\mathnet{http://mi.mathnet.ru/emj375}
\crossref{https://doi.org/10.32523/2077-9879-2020-11-3-66-78}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000610832700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101762674}
Linking options:
https://www.mathnet.ru/eng/emj375
https://www.mathnet.ru/eng/emj/v11/i3/p66
This publication is cited in the following 4 articles:
B. Sh. Kulpeshov, S. V. Sudoplatov, “Spherical orders, properties and countable spectra of their theories”, Sib. elektron. matem. izv., 20:2 (2023), 588–599
I. V. Latkin, “The recognition complexity of decidable theories”, Eurasian Math. J., 13:1 (2022), 44–68
N. D. Markhabatov, S. V. Sudoplatov, “Ranks for families of all theories of given languages”, Eurasian Math. J., 12:2 (2021), 52–58
S. V. Sudoplatov, “Distributions of countable models of disjoint unions of Ehrenfeucht theories”, Lobachevskii J. Math., 42:1 (2021), 195–205