Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2020, Volume 11, Number 2, Pages 65–71
DOI: https://doi.org/10.32523/2077-9879-2020-11-2-65-71
(Mi emj366)
 

This article is cited in 1 scientific paper (total in 1 paper)

On stability of bases in Hilbert spaces

E. A. Larionov

Department of Applied Mathematics, Moscow State University of Civil Engineering, 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation
Full-text PDF (375 kB) Citations (1)
References:
Abstract: In a Hilbert space we consider a minimal and complete system asymptotically close to an almost normed unconditional basis and find conditions under which such system also forms an unconditional basis. The proof of this statement is based on a new criterion of compactness of linear operators proposed in this paper.
Keywords and phrases: perturbation, compact operator, orthoprojector, isotropically non-compact sequence.
Received: 29.06.2019
Bibliographic databases:
Document Type: Article
MSC: 35P15
Language: English
Citation: E. A. Larionov, “On stability of bases in Hilbert spaces”, Eurasian Math. J., 11:2 (2020), 65–71
Citation in format AMSBIB
\Bibitem{Lar20}
\by E.~A.~Larionov
\paper On stability of bases in Hilbert spaces
\jour Eurasian Math. J.
\yr 2020
\vol 11
\issue 2
\pages 65--71
\mathnet{http://mi.mathnet.ru/emj366}
\crossref{https://doi.org/10.32523/2077-9879-2020-11-2-65-71}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556974900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088876841}
Linking options:
  • https://www.mathnet.ru/eng/emj366
  • https://www.mathnet.ru/eng/emj/v11/i2/p65
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025