Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2020, Volume 11, Number 1, Pages 86–94
DOI: https://doi.org/10.32523/2077-9879-2020-11-1-86-94
(Mi emj358)
 

This article is cited in 2 scientific papers (total in 2 papers)

An estimate of approximation of a matrix-valued function by an interpolation polynomial

V. G. Kurbatov, I. V. Kurbatova

Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia
Full-text PDF (750 kB) Citations (2)
References:
Abstract: Let $A$ be a square complex matrix; $z_1,\dots,z_n\in\mathbb{C}$ be (possibly repetitive) points of interpolation; $f$ be a function analytic in a neighborhood of the convex hull of the union of the spectrum of $A$ and the points $z_1,\dots,z_n$; and $p$ be the interpolation polynomial of $f$ constructed by the points $z_1,\dots,z_n$. It is proved that under these assumptions
$$ ||f(A)-p(A)||\leqslant \frac1{n!}\max_{t\in[0,1]\atop {\mu\in co\{z_1,z_2,\dots,z_n\}}}||\Omega(A)f^{(n)}((1-t)\mu\mathbf{1}+tA)||, $$
where $\Omega(z)=\prod_{k=1}^n(z-z_k)$ and the symbol $co$ means the convex hull.
Keywords and phrases: matrix function, polynomial interpolation, estimate.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00732_a
Ministry of Education and Science of the Russian Federation 3.1761.2017/4.6
The first author was supported by the Ministry of Education and Science of the Russian Federation under state order No. 3.1761.2017/4.6. The second author was supported by the Russian Foundation for Basic Research under research project No. 19-01-00732 A.
Received: 18.03.2019
Bibliographic databases:
Document Type: Article
MSC: 65F60, 97N50
Language: English
Citation: V. G. Kurbatov, I. V. Kurbatova, “An estimate of approximation of a matrix-valued function by an interpolation polynomial”, Eurasian Math. J., 11:1 (2020), 86–94
Citation in format AMSBIB
\Bibitem{KurKur20}
\by V.~G.~Kurbatov, I.~V.~Kurbatova
\paper An estimate of approximation of a matrix-valued function by an interpolation polynomial
\jour Eurasian Math. J.
\yr 2020
\vol 11
\issue 1
\pages 86--94
\mathnet{http://mi.mathnet.ru/emj358}
\crossref{https://doi.org/10.32523/2077-9879-2020-11-1-86-94}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556972800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087778765}
Linking options:
  • https://www.mathnet.ru/eng/emj358
  • https://www.mathnet.ru/eng/emj/v11/i1/p86
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :141
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024