Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2019, Volume 10, Number 3, Pages 48–67
DOI: https://doi.org/10.32523/2077-9879-2019-10-3-48-67
(Mi emj338)
 

This article is cited in 4 scientific papers (total in 4 papers)

Extension and decomposition method for differential and integro-differential equations

I. N. Parasidis

General Department, University of Thessaly, Gaiopolis, 41110 Larisa, Greece
Full-text PDF (436 kB) Citations (4)
References:
Abstract: A direct method for finding exact solutions of differential or Fredholm integro-differential equations with nonlocal boundary conditions is proposed. We investigate the abstract equations of the form $Bu = Au-gF(Au) = f$ and $B_1u = A^2u - qF(Au) - gF(A^2u) = f$ with abstract nonlocal boundary conditions $\Phi(u) = N\Psi(Au)$ and $\Phi(u) = N\Psi(Au)$, $\Phi(Au) = DF(Au) + N\Psi(A^2u)$, respectively, where $q$, $g$ are vectors, $D$, $N$ are matrices, $F$, $\Phi$, $\Psi$ are vector-functions. In this paper:
  • we investigate the correctness of the equation $Bu = f$ and find its exact solution,
  • we investigate the correctness of the equation $B_1u = f$ and find its exact solution,
  • we find the conditions under which the operator $B_1$ has the decomposition $B_1=B^2$, i.e. $B_1$ is a quadratic operator, and then we investigate the correctness of the equation $B^2u = f_1$ and find its exact solution.
Keywords and phrases: differential and Fredholm integro-differential equations, nonlocal integral boundary conditions, decomposition of operators, correct operators, exact solutions.
Received: 16.01.2018
Bibliographic databases:
Document Type: Article
MSC: 34B05, 34K06, 34K10
Language: English
Citation: I. N. Parasidis, “Extension and decomposition method for differential and integro-differential equations”, Eurasian Math. J., 10:3 (2019), 48–67
Citation in format AMSBIB
\Bibitem{Par19}
\by I.~N.~Parasidis
\paper Extension and decomposition method for differential and integro-differential equations
\jour Eurasian Math. J.
\yr 2019
\vol 10
\issue 3
\pages 48--67
\mathnet{http://mi.mathnet.ru/emj338}
\crossref{https://doi.org/10.32523/2077-9879-2019-10-3-48-67}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000497725700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85080892979}
Linking options:
  • https://www.mathnet.ru/eng/emj338
  • https://www.mathnet.ru/eng/emj/v10/i3/p48
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024