|
Minima of functions on $(q_1, q_2)$-quasimetric spaces
R. Senguptaa, S. E. Zhukovskiybc a Faculty of Science,
Peoples’ Friendship University of Russia,
6 Miklukho-Maklaya St,
117198, Moscow, Russia
b Department of Higher Mathematics,
Moscow Institute of Physics and Technology,
9 Inststitutskii per.,
141700, Dolgoprudny, Moscow region, Russia
c Institute of Control Sciences of the RAS,
65 Profsoyuznaya st.,
117997, Moscow, Russia
Abstract:
Lower semicontinuous functions defined on a complete $(q_1, q_2)$-quasimetric spaces are considered. For these functions, minimum existence conditions are obtained.
Keywords and phrases:
$(q_1, q_2)$-quasimetric space, Caristi-like condition, minimum.
Received: 03.02.2019
Citation:
R. Sengupta, S. E. Zhukovskiy, “Minima of functions on $(q_1, q_2)$-quasimetric spaces”, Eurasian Math. J., 10:2 (2019), 84–92
Linking options:
https://www.mathnet.ru/eng/emj332 https://www.mathnet.ru/eng/emj/v10/i2/p84
|
|