Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2017, Volume 8, Number 1, Pages 119–127 (Mi emj251)  

This article is cited in 2 scientific papers (total in 2 papers)

Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators

A. K. Motovilovab, A. A. Shkalikovc

a Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie St, 141980 Dubna, Moscow Region, Russia
b Faculty of Natural and Engineering Sciences, Dubna State University, 19 Universitetskaya St, 141980 Dubna, Moscow Region, Russia
c Faculty of Mathematics and Mechanics, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory St, 119991 Moscow GSP-1, Russia
Full-text PDF (411 kB) Citations (2)
References:
Abstract: Assume that $T$ is a self-adjoint operator on a Hilbert space $\mathcal{H}$ and that the spectrum of $T$ is contained in the union $\bigcup_{j\in J}\Delta_j$, $J\subseteq\mathbb{Z}$, of the segments $\Delta_j = [\alpha_j,\beta_j]\subset \mathbb{R}$ such that $\alpha_{j+1}>\beta_j$ and
$$ \inf_j(\alpha_{j+1}-\beta_j)=d>0. $$
If $B$ is a bounded (in general non-self-adjoint) perturbation of $T$ with $||B||=:b<d/2$, then the spectrum of the perturbed operator $A=T+B$ lies in the union $\bigcup_{j\in J}U_b(\Delta_j)$ of the mutually disjoint closed $b$-neighborhoods $U_b(\Delta_j)$ of the segments $\Delta_j$ in $\mathbb{C}$. Let $Q_j$ be the Riesz projection onto the invariant subspace of $A$ corresponding to the part of the spectrum of $A$ lying in $U_b(\Delta_j)$, $j\in J$. Our main result is as follows: The subspaces $\mathcal{L}_j=Q_j(\mathcal{H})$, $j \in J$ form an unconditional basis in the whole space $\mathcal{H}$.
Keywords and phrases: Riesz basis, unconditional basis of subspaces, non-self-adjoint perturbations.
Funding agency Grant number
Russian Foundation for Basic Research
Deutsche Forschungsgemeinschaft
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and by the Russian Foundation for Basic Research (RFBR).
Received: 23.01.2017
Bibliographic databases:
Document Type: Article
MSC: 47A55, 47A15
Language: English
Citation: A. K. Motovilov, A. A. Shkalikov, “Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators”, Eurasian Math. J., 8:1 (2017), 119–127
Citation in format AMSBIB
\Bibitem{MotShk17}
\by A.~K.~Motovilov, A.~A.~Shkalikov
\paper Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators
\jour Eurasian Math. J.
\yr 2017
\vol 8
\issue 1
\pages 119--127
\mathnet{http://mi.mathnet.ru/emj251}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411744800008}
Linking options:
  • https://www.mathnet.ru/eng/emj251
  • https://www.mathnet.ru/eng/emj/v8/i1/p119
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024